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Abstract

-The Seismically Stable Platform (SSP) at the Central

Inertial Guidance Facility, Holloman AFB, is a dual

reactionary mass isolation platform designed to remove

198 g RMS/Hz accelerations and-{0.02 arcseconds angular

position or tilt disturbances in all axes from a test

environment intended for evaluating "Third Generation Gyro"

inertial instruments. Disturbances are removed by two

stages of pneumatic isolators comprising a passive isolation

system and augmented by an active control system to cover

the operational bandwidtf from i6- 8 Hz to 100 Hz.

A dynamic model of the SSP confirmed the passive

vibration transmissibilities and identified severe

limitations on gain and phase margin to the active controller

design. The proposed digital controllers identified the

SSP to be weakly controllable. The discrete state

representation of the SSP and control law exhibited numerical

difficulties detrimental to system stability.

This study recommends single stage pneumatic isolation

or fluid isolators monitored by disturbance parameter

estimation schemes.

xvi



ANALYSIS AND DESIGN
OF A DIGITAL CONTROLLER

FOR A SEISMICALLY STABLE PLATFORM

I. Introduction

The purpose of this investigation is to analyze and

design an active control system for the Seismically Stable

Platform (SSP) at the Central Inertial Guidance Test Facility,

(CIGTF) at Holloman Air Force Base, New Mexico.

An inertial test platform such as the Seismically

Stable Platform must have translation and rotational ground

vibrations attenuated or isolated below the candidate test

instrument's measurement sensitivity thresholds. An active

controller should augment the existing passive isolation

system to limit SSP translations to less than 10-8 g RMS/Hz

and angular tilts to less than 0.02 arcseconds over the

required bandwidth of 10-8 Hz to 100 Hz. (Ref 1, 14).

To understand the implication of these specifications,

a historical overview of seismic platforms is discussed before

the problem and approach are revealed.

Historical Perspective

Seismic isolation platforms serve as a controlled

environment to test and evaluate inertial grade instruments

1



needed in aerospace navigation and guidance applications.

New missions have demanded greater accuracy and sensitivity.

To meet these instrument requirements, the Third Generation

of Gyros (TGG) has emerged from instrument technology making

past test procedures and environments ineffective. (Ref 15). To

judge properly instrument attributes, the bias, drifts, and

accuracy profiles must be distinguishable and predictable

from test platform background disturbances. Angular tilts

and specific force or acceleration disturbances are critical

in gyroscope and accelerometer sensor evaluations. Distur-

bances may be either measured, modeled and compensated

in test profiles or complete!-. (or nearly) removed or

isolated from testing parameters. The SSP will isolate

disturbances.

Early Air Force efforts in gyro testing and tilt

stabilization were at the Frank J. Sieler Research Laboratory,

United States Air Force Academy using the Iso-Pad isolation

test platform (Ref 21). Numerous efforts (Ref 4, 5, 23)

were made to control tilt or position as well as angular

acceleration (translational acceleration, in accelerometer

testing). Tilt control was possible but translational

accelerations were limited to 10-8 g RMS/Hz above 10 Hz

only (Ref 3:18).

On the basis of the Iso-Pad control design efforts, a

seismic platform was needed with a lower structure resonance.



Engineers at FJSRL and CIGTF reviewed the dual reactionary

mass concept and had an isolation system constructed at

Holloman A.F.B. (Ref 24).

Background

The dual reactionary mass system was added to an

existing seismic concrete block by the contractor, Measure-

ment Analysis Corporation (MAC). Concrete pillars were

added to the seismic block and a steel box-beam ring was

placed on pneumatic isolators atop the pillars. On the

ring were placed yet another set of pneumatic isolators with

a steel platform which would contain the gyro table work

station. The pneumatic isolators and steel structures

comprise a passive isolation system, as shown in Figure 1.1.

This system is designed to respond as a double low pass

filter above 20 Hz, limiting tilt less than ±0.02 arcseconds,

and accelerations to less than 10- 8g RMS/Hz. Recent

measurements by CIGTF engineers (Ref 18) do not support the

desired passive response. These discrepancies are expanded

in Chapter IV, SSP Passive Response.

Problem

The objective of this thesis investigation is to analyze

and design an active control system that stabilizes the CIGTF

Seismically Stable Platform (SSP) to within ±0.02 arcseconds

rotation and 10-ag RMS/Hz translation in all axes over the

3



-Upper Level
S~econd Stage

Isolation

Seismic Pier

Figure 1.1. SSP Passive Isolation System
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bandwidth of 10-8 Hz to 20 Hz. These constraints result

from accuracy and sensitivities generic to the TGG evaluation

and are expanded in Chapter II, SSP Functional Requirements.

Scope and Assumptions

The analysis fully investigates the SSP dynamics model

to predict and to verify passive response characteristics.

A control law is built on the SSP dynamics to meet the

specifications using Linear Quadratic (LQ) theory. (Ref 6:415).

The Separation Theorem or Principle (Ref 12) is imposed

to consider the state estimation and controller design issues

separately. Basically, the control law considerations are

investigated assuming the SSP sensors provide perfect state

information. The state representation looks at the three

body dynamics of the seismic concrete block and two structural

members of the SSP perturbed about a nominal system orientation.

Only first order effects and linearized equations are included

in the SSP perturbation models. The dynamics development

clearly identifies when these approximations are made,

completely portraying rotation and translation coupling modes.

Finally, the study assumes that the passive isolation system

is effective in removing rotational and translation disturbances

from 20 Hz to 100 Hz. The individual body structural reson-

ances of the SSP are assumed to be above 100 Hz (Ref 14:E-3).

The control law assumes influence over bandwidth of 10- 8 Hz to

20 Hz.

5



The FPS - foot, pound, second - units system is used

throughout the study to be consistent with other SSP reports

(Ref 14:D-19, Ref 20). Mass units are expressed in lb-sec 2 /ft

with the acceleration due to gravity, a constant, equal to

32.2 ft/sec 2 (Ref 10).

Approach

The plan of attack is divided in two areas - dynamics

model and control law development.

The control law specifies a Linear Quadratic (LQ) -

Proportional Plus Integral (PI) controller as the optimum

solution (Ref 6). LQ cost weighting emphasizes system

states critical to meeting a given performance specification.

Proportional Plus Integral control structures are recommended

typically (Ref 6:340) for disturbance rejection and were

proposed by MAC for the SSP (Ref 14:D-22). Discrete time

and actuator energy cost criteria validate the feasibility

of the control problem solution.

Overview

The remainder of the thesis is divided into a set of

controller requirements, dynamics modeling, passive response

and LQ design.

Chapter II, SSP Functional Requirements, covers the

important dynamic model constraints and expected control

responses needed to outline the active controller design.

6



Chapter III, SSP Dynamics, develops the full six

degree of freedom equations for each of the three body

complete systems.

Chapter IV, SSP Passive Response, examines various

stages of isolation for transmissibility and stability

analysis.

Chapter V, Active Controller Design, develops the

truth model and the reduced order state equations into a

control law resulting in a steady error within the problem

requirements. Reduced order alternative models are compared

with the system truth model.

Chapter VI, Conclusions and Recommendations, summarizes

the dynamics modeling and controller problem which leads to

recommendations for future work.



II. SSP Functional Requirements

Introduction

To understand better the Seismically Stable Platform

(SSP) specifications, a discussion of the generating inertial

instrument's requirements and the SSP is necessary. In 1975,

the Charles Stark Draper Laboratory commented on gyro testing

environments needed to support the Third Generation of Gyros

(TGG) (Ref 15). These considerations are the driving force

behind SSP development. With these constraints in mind, the

SSP system analysis considers tilt disturbance constraints

which are important in gyro evaluation, and translation

acceleration disturbance constraints as the prime error in

accelerometer testing.

SSP Description

The SSP is a dual reactionary mass isolation platform

designed to have a passive transmissibility to seismic

disturbances of -40 dB/decade above 20 Hz to 100 Hz

(Ref 15:5). The active controller is concerned with the

transmissibility from 10- 8 Hz to 20 Hz.

The dual reactionary mass concept is explained best by

describing the SSP subsystems in Figure 2.1. The top isolation

level or subsystem is a welded steel cylinder with reinforced

walls, suspended by its top at four symmetrical horizontal

points by steel boxed beam tabs. This upper level housing

8



Upper Level

'---Second Stage
Isolation

Lower Level

- - First Stage
Isolation

Pier or Seismic
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Figure 2.1 SSP Subsystems
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is recessed for a gyro test table. Below the suspension

points are four Barry AL-133-12 pneumatic isolators, referred

to as the "Second Stage Isolation" in the study analysis.

The top steel structure and gyro table are the "Upper Level",

known as primary mass or reactionary mass in other literature

(Ref 14).

Directly below the second stage isolation is a second

subsystem, the "Lower Level" which is also identified in

other reports as the secondary mass or intermediate mass.

The lower level is an octagonal box beam recessed on the

top and bottom to receive the second stage and first stage

pneumatic isolators as shown.

Appendix A discusses the subsystem dimensions and

physical attributes. The upper level mass is twice the

weight of the lower level to give a two stage transmissibility

attenuation to disturbances, with the lower stage giving

the first low pass second order response, and the second

stage following a lower frequency cutoff second order response.

Chapter IV, Passive Response, fully explains the theoretical

responses and transmissibility concept.

The SSP is centered on a concrete seismic mass atop

concrete pillars or piers. Future analysis will include

the concrete piers and seismic block as simply the "pier".

The pier subsystem is physically isolated below ground

level from the laboratory vibration environment by a rubber

grouted air gap. Figure 2.2 shows the general orientation

of the SSP, the seismic pier and laboratory. The seismic

10
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block subsystem and supporting soil should offer yet another

second order low pass response concerned with frequencies

higher than the SSP isolation. Again, Chapter IV

develops the expected dynamics further.

The supporting piers, lower and upper structures and

the pneumatic isolators comprise the passive isolation

system. How the SSP problem specifications and the TGG

specifications apply to the passive system are examined

next.

Third Generation Gyro (TGG) Specifications

Quoting from Charles Stark Draper Laboratory (CSDL)

Report, (Ref 15:1).

"The resolution of these new inertial
instruments is expected to be so fine
that instrumentation errors and uncer-
tainties must be modeled and verified
in order to establish the sources of
instrument noise... the following
assumptions will be made for performance
goals of the next generation of
instruments:

(1) Angular motion uncertainty 10-5 meru.

(2) Linear motion uncertainty 10-9 g.

(3) Measurement bandwidth 10- 7Hz to
10- 2H z. "

Each CSDL - TGG specification is examined to determine

the implied constraints on the SSP dynamics and performance

specifications.

12



Item (1) concerns the angular motion uncertainty of

10-
5 meru's - milli earth rate units, or 1.5 X 10- ' arcseconds/

second. This conversion is shown in Appendix B. The SSP

specifications do not include an angular acceleration

requirement. For a pure ±0.02 arcsecond tilt and using time

averaging (see Appendix B), the angular acceleration over

the 10- 8 Hz to 100 Hz bandwidth results in angular rates

from ± 2 X 10-10 arcseconds/second to 2 arcseconds/second.

This study was not given a pure angular acceleration specifica-

tion. Translation accelelations are limited in all axes to

10- 8 g RMS/Hz.

Item (2) arises from a navigational error of one

hundred feet on the Earth's surface averaged over an hour

flight. Appendix B shows how the 10- ' g measure is achieved

and demonstrates the use of average linear velocity and

acceleration approximations. The SSP translation acceleration

constraint is now 10-8 g's, but future plans (Ref 20) include

a nano-g (10- ' g) performance specification.

Item (3) concerns the measurement bandwidth which is

implied by the need to observe the test environment for

disturbances lasting 100 second periods to the full test

cycle of 120 days. Appendix B shows this basic derivation.

CIGTF presently has a goal of 90 days. The SSP bandwidth

requirement matches the lower limit but exceeds the CSDL

item (3) specification in order to remove existing ground

13



motions above 10-? Hlz to 20 Hz; 20 Hz and above is auqmented

with the passive isolation system.

The sources and c,,aracteristics of seismic disturbances

are next discussed to understand the source of acccleration

and tilt vibrations.

Environmental Disturbances

The SSP passive isolation system and an active control

system together must remove translational and rotational

disturbances detrimental to inertial instrument evaluation.

Until the possible disturbance mechanisms and physical

strengths (magnitude excursions) are understood, the control

issues in relation to design specification are not clear.

Seismic disturbances arise from distant earthquakes,

micro-seismic waves, cultural noise, low frequency tilt,

acoustical noise, test environment temperature changes,

and stray electro-magnetic fields (Ref 15:5).

Earthquakes can induce accelerations typically on

the order of 1.6 X 10- 6 g at 0.2 Hz and surface waves of

0.4 inches displacement at 0.05 Hz and 100 X 10 - 1 g (Ref 15:5).

Micro-seismic waves, or microseisms are minute waves that

continually move through the surface of the Earth and are

caused by weather fronts and ocean waves. The most prominent

and important microseisms are at frequencies 0.14 Hz to

0.25 Hz with accelerations of 0.8 X 10- 6 g to 6 X 10 - 1 g

with amplitudes from 400 to 1000 micro inches (Ref 15:4).
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Cultural noise is a manmade disturbance caused from

vehicle traffic, aircraft, rocket sled tracks and mechanical

machinery such as air compressors and air conditioners.

Cultural noise typically peaks at 29 Hz and 59 Hz with

acceleration of 10 - 3 g (Ref 11:10).

Low-frequency tilts may be caused from building

temperature distortions in a predominately northerly

direction (northern hemisphere) of about 20 arcseconds with

seasonal variations of 90 arcseconds. This temperature

distortion can occur at rates of 34 X 10- 1 meru (Ref 15:2).

Acoustic wavefronts within the test area can cause

low-frequency motions much like barometric variations

caused by weather effects and sonic noises caused by jet

aircraft. In a test environment, pressure and temperature

are usually monitored and controlled; but their effects are

very critical in the operation of seismometers as well as

any gradients across structures like the SSP.

Electromagnetic fields can cause small torque disturbances.

These field intensities also may induce very low frequency

signal noise effects into sensor measurements through

voltages induced in cabling directly or indirectly through

ground loops in instrument amplifiers or A/D converters.

Seismometer theory is not addressed in this study

since perfect system knowledge is assumed, but the disturbance

characterizations just mentioned for various phenomena have

one significant dilemma. All the disturbances typified are

15
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using measurement technology that cannot approach periods

of longer than 1000 seconds (10- 3 Hz) and the required

10 8 g's sensitivity (Ref 8). Projected future test platform

bandwidths for inertial testing require 90 day (10 8 Hz)

test cycles or periods. Measurement considerations have been

detailed in several reports (Ref 14:10-11; 20:15-19; 22),

but inertial testing needs to rely on parameter estimation

techniques (Ref 12) and the hope of future seismic instru-

mentation technology.

Another problem unique to the SSP is vertical leveling

of the four support points for the upper and lower masses

or levels. A problem arises in getting all four isolators

adjusted to level each corner of the SSP structure (Ref 2).

Each isolator has a mechanical limit switch preadjusted to

keep isolator height constant under load variations. In

a four point suspension, Management Analysis Corporation

(MAC) feared that one isolator would be above or below the

nominal plane for a given level, and the affected level

would warble or tip; similar to the problem of cutting a

chair's four legs to the same length. A three point

suspension avoids this tipping phenomena, so the South and

East isolator for each stage have their air supply regulated

by only one stage limit switch. The dynamics and controller

analysis account for this characteristic. With problem

requirements outlined, the SSP dynamics model is now

developed.
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III. Dynamics Analysis

Introduction

The SSP dynamics are described by linearized differ-

ential equations using force and angular momentum relation-

ships. A full six degree of freedom development - three

translational and three rotational modes, considers perturbed

states of the upper and lower level, and pier subsystems.

The perturbed states are described about a nominal

coordinate frame for each of the three bodies for the six

degrees of freedom. Each coordinate frame uses a unique

subscript notation to identify clearly the SSP dynamics

derived from a lumped spring/damper network model. Once

the representative equations of motion are obtained,

translational and rotational cross coupling terms are

identified. Before the analysis begins, a coordinate

frame is defined for each SSP structure along with

variables describing each structure's motion.

SSP Coordinate Frames

Before even a simple mass spring system can be analyzed,

all coordinate frames, variables and references must be defined.

With the SSP dynamics, naming conventions are particularly

important because the resulting complex differential

equations exhibit forms common to much simpler mechanical
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models. Also, validity checks on the equations are much

easier to relate physically to the SSP.

A body coordinate frame is fixed to the upper level

(U), lower level (L) and the pier (P). Figure 3.1 shows

the body frames and their orientation. A right-handed

unit vector is defined by u3 = u X u2 for the upper level

and similarly for the lower and pier frames. Notice at

U2 , 12 , and P2 are oriented in the navigational North

sense, in the nominal position. Additionally, a nominal

state is assigned with u3 , 13 and P3 oriented along the

local vertical e3. The e frame, the Earth frame, is taken

as inertial.

Rotation angles in each frame are as shown, with

Ou 1 0u and 0U for rotations about the Earth frame e1 ,

e2 and e3 respectively for the upper level body. The lower

level and pier rotations are defined similarly. Appendix

C details the direction cosine transformation matrices

necessary to express position and velocity vectors in the

respective body frames to the Earth frame. The transformation

matrices are derived using small angle, first order

approximations as verified by Likins (Ref 10:102). Such

approximations assume the SSP oriented in a nominal state

and perturbed in small angular motions about the respective

centers of mass.

To understand the importance of the direction cosine

transformation and to gain the insight necessary to write the
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full six degree equations of motion, the motion of a

single typical corner of the SSP is analyzed for a small

perturbation about a nominal orientation.

Corner Perturbation Derivative

The perturbed state of a body corner or isolator

suspension point is derived in Appendix D. Details of

derivation relate translational and rotational modes can be

more clearly understood from Figure D.1. The vector notation

UE, which is a position vector in Earth frame relating to

the upper level (U), easterly (E) corner, is used extensively
_

to write the equations of motion. Similarly UE means the

time derivative, Earth frame.

Now the isolator suspension points are defined in matrix

notation; the pneumatic isolator characteristics are

related in vector components.

Isolator Lumped Parameters

Before the SSP equations of motion can be written,

the pneumatic isolator is represented by a directional

lumped spring/damper network or conceptually as spring/

damper matrices.

According to studies by MAC (Ref 14:C-10), the pneumatic

isolator has nearly the same resiliency in the vertical and

two horizontal axes for small load deflections. Essentially,
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the isolator is depicted as in Figure 3.2, Isolator Model.

Notice the symbology used as well as the matrix notation.

For example,

cFX 0 0

C F 0 c FY 0 [e] (3-1)

0 0 c FZ

implies a matrix damper (C) for the first state isolation

(F). The matrix then is expressed in Earth (e) unit vectors,

with cFX meaning first stage isolation, X or ej direction.

Likewise K would be a matrix spring. The isolator charac-

teristics are expressed in Earth frame components without

direction cosine transformation. This assumption is made

because vertical characteristics are due mainly to the

pneumatic isolator itself, with horizontal characteristics

due mainly to the isolator seal (elastomer diaphragm)

stiffness (Ref 14:C-10). Since the perturbation of the

isolator would not reorientate these characteristics

appreciably, no matrix transformation is done. Vector

spring and damper effects of the relative subsystems'

displacement and velocity accounts for any compensation

in isolator dynamics orientation.
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Pneumatic Isolator

kFY 0 1 C FY 1 F

k0F 0 0kcFz0j

K F 0O 
0 

FYC0CF 
FJ

F, first stage isolation

Figure 3.2 Isolator 4odle1
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The Barry Controls AL-133-12 Serva-Levl pneumatic

isolator characteristics have been studied by MAC (Ref 14:C-53).

Essentially the vertical characteristics are a function

of the individual isolator's load and air supply, MAC

determined the vertical natural frequency (fVN) to be

1.8 Hz. From the same report, the horizontal natural

frequency (fHN) is 4.0 Hz and 3.8 Hz for the upper and

lower level isolators, respectively. Each isolator axis

represents a second order system, comprised of a single

mass, spring and damper shown in Figure 3.3. The differential

equation, using Laplace operator, zero initial conditions,

is

ms 2 X(s) = -csX(s) - kX(s) + F(s) (3-2)

X(s) = + 1/i (3-3)

F(s) s2 + s + k
in m

The denominator of Eq 3-3 is in a classical second

order form or in generalized function of natural frequency

(WN) and damping ratio ( )

s2 + 2 N S + W2N (3-4)
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Fx

m, mass

k, spring stiffness

c, damping coefficient

x, displacement

F, applied force, positive x direction

Figure 3.3 Single Mass, Spring and Damper
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Equalling like order coefficients of Eq 3-3 to Eq 3-4,

the following relations are implied:

2 wN mc (3-5)

N N

c ~ ~ f frqunc Nn hertz -f(36
f, frequency in hertz

c 4nfm (3-7)

also

W 2 = k
WN m (3-8)

k = WN2m (3-9)

k = (2rf) 2m (3-10)

Using these relationships and the MAC derived natural

frequencies, the second stage isolator spring and damper

coefficients are calculated using one fourth (four isolators) the

upper level mass (Refl4:C-53):

fVN = 1.8 .z Load = = 132.56 lb-sec 2

ft

(3-11)

where

= 530.22 lb-sec
2

f t
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ksz = 16955.12 lb/ft

CSZ = 89.95 lb-sec
ft

f = 4.0 Hz (3-12)

KSX = 83728.99 lb/ft

C = 199.89 lb-sec
ft

Appendix E summarizes all the lumped spring and damper

parameters used in this study. References are given to

appropriate pages in MAC study (Ref 14) which give further

details and derivations.

Now the subsystem coordinate frames and dynamical

characteristics are described using matrix notation generic

to the SSP.

SSP Equations of Motion - Six Degrees of Freedom

The SSP has six degrees of freedom - three translational

(91, 62, 6 3) and three rotational (p, 0, f) for three

bodies or structures - the upper level (U), lower level (I.)

and pier (P). An equation is written for each corner (such

as UE, U N, tk, US) of each body. Then each equation is
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resolved into Earth components and the translational

and rotation effects segregated.

A lumper parameter model for the SSP is

shown in Figure 3.4. Various levels of isolation are

indicated for the soil or ground (0) isolation, first

stage pneumatic isolators (F) and second stage pneumatic

isolators (S) using the matrix spring and damper concepts.

The spring and damper characteristics are expressed in

e unit vectors, but the spring and damper end points are

vector points. For example, LE and UE have Ks and Cs

connecting them. LE, LN, LW, LS all are points in the plane

representing the lower level steel-boxed ring. Similarly

the upper level platform and pier seismic block are

described.

From basic spring and damper dynamics for one dimension,

the following equations result for the spring (F ) and

damper (FC) forces.

Fs = kx (3-13)

where

x, spring displacement

k, spring constant

in vector case, using column vectors

FS [Ks] x (3-14)
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f-F
Pier Level f HE 11-N

K F c F
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Figure 3.4 SSP Lumped Parameter Model
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where F, x, KS

FS Fx X x (3-15)

F yy

F z
z

k SX 0 0

KS 0 kSY 0 (3-16)

0 0 k Sz

F k 0 0 k sx X

Fy 0 kSY 0 X ksyy (3-17)

F 0 0 kSz kszZ

The form of Eq 3-14 is chosen to make algebraic

manipulation easier.

The equations for the damper in scalar and vector case

are

0

F = cx (3-18)C

where,
0

x, damper velocity

c, damping coefficient
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Fcs [CS x (3-19)

where F, x, CS

0

Fc F , x x CSX 0 0

0

Fy CS = 0 CSY 0

0

F z  0 0 CSZ

0

FX  CSX 0 0 CsxX
xo

F 0 CSY 0 x CSYy (3-20)

0

F 0 C c z

Again Eq 3-19 is written in a form to simplify

equations later in development. The displacement vector

R and velocity vector x concept can easily be written using

UE and UE notation by writing components as column vectors

in the e frame. Eqs D-6, D-10, in Appendix D, show U-E
0

and UE in vector notation.

Extending the above dynamic force vectors, F = ma

can be written for the SSP from Figure 3.4. The SSP is a

constant mass system. Newton's Second Law concerns the
Q_9

inertial center of mass acceleration of each body as U,

L and P for the upper level, lower level and pier,

respectively.
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Summing the forces on each body due to isolator

spring/damper equivalents and active controller actuators,

results in the following equations. For the upper level,

the summing forces yields,

muU C s (LE - UE) + Ks(LE - UE)

0 S

- UN) + KS(EN - UN)

+C s (LW - *i) + Ks ( -W - UW)

0 0
+C S (LS - US) + KS (LS - US)

+ FUE + FUN + FUW + Fus (3-21)

Where FUE F UN ' YUW and fUS are the four active

controller actuators between the upper level and pier.

Similarly, the lower level equations are as follows,

9.0 0
o -C E - UE) - Ks(LE - UE)

-CS (L N - UN) - KS (LN - UN)

-C S (LW -UW) - KS ( L W - OW)

-C S (LS -US) - KS (LS - U-S)
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+C F(PE - LE) - K F(PE - LE)
_ F

+CF(PN - LN) - KF(PN - LN)

o 0

+CF (PW - LW) - K F (P-W _ -)

+CF (PS - LS) - K F(PS - LS) (3-22)

Likewise, the pier force equations are as follows:

mpP = -C F ( P E - LE) - K F (PE - LE)

-CF(PN - LN) - KF(PN - LN)

0 0
-C F (PW -LW) - K F ( P W - LW)

F F

-C F (PS - LS) - K F (PS - LS)

-.0 0

+CG(GE PE) - KG ( G-E - P-E)

0 0
+CG(GN PN) - K (GN - PN)

+CG(GW -PW) - KG( G W - PW)

+CG(GS - PS) - KG(GS - PS)

-F -FpN -F - F (3-23)

Notice that the -FPE , -FpN -F pw and -F forces

result from the four active controller actuators being

connected between the upper level corners and the pier

foundations.
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Appendix F manipulates Eqs 3-21, 3-22 and 3-23

into differential equations for the e components of each

body acceleration and applied dynamic forces. Appendix F

yields the differential equations describing the three degrees

of translational for the SSP. Although rotational terms

are present, two important points are made. First, for

small angular movements the rotational terms certainly

aid translational positions and velocities, as a quick

units check verifies. Secondly, if the SSP isolator

placement is theoretically symmetrical, all rotation

contributions vanish, which is physically reassuring showing

that the equations are correct. Now the three degrees of

rotational freedom are investigated to complete the dynamics

description of the SSP.

Rotational equations of motions of the three bodies -

upper level, lower level and pier, result from summing

moments about each body center of mass and examining

the resultant angular accelerations. Expressed more

formally, the rotational equivalent of Newton's Second Law

is M = H (Ref 10:438), where M is the moment vector

about the body center mass and H is the time derivative in

an inertial frame of the vector angular momentum, H.

The angular momentum and its derivative are expanded

to show the mathematical relationship to the body moments

of the SSP. Angular momentum is written as
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M H (3-24)

where,

H, angular momentum
0

H, time derivative, inertial frame

M, body moments

The relationship is derived for the upper body as,

HU IUWU (3-25)

where,

IU ,moment of inertia matrix

WU 'angular velocity vector

I UX 0 0

IU  0 Iuy 0 (3-26)

0 0 I UZ

I UX, Iu ,II UZ are body noments of

inertia about ul Iu 2 , u3 axes.

0 , OG 
3A

WU =PUI + @u + 0U3  (3-27)

, , 0 are tilt rates defined in Appendix C.

34



p0

HU IUX 0 0 pui (3-28)

0,

0 0 IUZI u
0,

RU =IuxU + 1uy4U2 + Iuz0U3 (3-29)

The components of the upper level moment matrix are

written as,

MU  = MU I  + Mu2 + MuzU3 (3-30)

where,

MUx I MUy I MUZ are moments about u G , u2

and u3 axes.

Equating components in u frame, and transforming to e

frame using small angle, first order approximations derived

in Appendix C, the upper level moments relate to angular

accelerations as,

MUX =~ rU~ I~xuu = [x - 4 UOU (Iuy - Iuz)lei

(3-31)

CO0

MuyU2 =Ioycou2 = [uyu - OU U (Iuz - IuxlIe2

(3-32)

00 A00 
0 0

MUzU3 IUZ U 3 [1 [Uz0u - UU (I Ux - IUY )]3

(3-33)
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Eqs 3-31, 3-32, and 3-33 are known as Euler's equations

(Ref 10:439) and may be reduced further using small angle,

first order approximations to

00

U = IXU 81 (3-34)

'bya2 = I UY U2 (3-35)

00

z'a 3 = z U 3 (3-36)

Using similar transformations and approximations, the

lower level is described as

00M LXl 11 I LX' ' (3-37)

00

MLyl 2 = ILY L 2 (3-38)

00

MLZI3 = ILZO Le 3 (3-39)

and for the pier subsystem,

00

M PXPI Ip''P c-1 (3-40)

0oo

Mpy12 = Ipy p@ 2  (3-41)

00

MpZP3 = I (3-42)
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Now the body moments are related to the angular

acceleration and moment inertia. The rotation equations

are written as vectors for each body and respective

isolator and actuator dynamics. A moment is easily

described in the scalar case as

M = rF (3-43)

where,

M, moment

r, radial action arm

F, the applied force

For the vector case, consider a x, y, z cartesian

coordinate frame, with rx in the X direction, Fz applied

in positive Z and M a clockwise moment about the Y axis.

In cross product notation this reduces to

M X --rxFzY (3-44)

The minus sign indicates a clockwise moment for the

example. Now consider the east corner of the upper level
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TT

(UE) and the lumped parameter vector damper force

[T -UE]Tcs Using the concept of Eq 3 -1 9 , the damper

force in the e frame.

0 0 o o
Cs[LE - UE] c SX(XL- V61 A61

0 0 0
+csy(YL - YU + LE 0 L- UE()&2 3

+CSz(ZL - - ILE L + IJE 0 L) 3 C

(3-45)

The moment arm of the isolator on corner UE is

OUE (X3 + NJE~e + ( YU + U E OU )62

+ ( Z - UE4)6

(3-46)

Since the dynamics analysis is to be a linear model,

the moment arm in Eq 3-46 reduces to E81 - Use of the

other terms would include variable products and their

derivatives due to the cross product operation. From a

physical standpoint, under small angle approximations

and perturbations about a nominal body position, such

non-linear product terms would be neglectable.

To find the moment offered by the UE damper, the cross

product is done as
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MCS = [IkE&I] X C sLE - (3-47)

Using Eq 3-47, CS is

MCS = U E 0 0

A B C

= EC&2 + lJE1d3 (3-48)

The indicated operations in Eq 3-48 result in the

components of MCS as

00 0 0

s CS (c SzUEZL + CSZLEZU + CSZlEL0L - cSZlUElO )62

0 0 0 0
+(csYtEYL - CSYlUEZ( - CSYILEl'OL - cSYUEiUEU)e3

The first two terms in the 62 and e 3 components

represent the translation cross coupling terms and the last

two in each component are the pure rotation contributions.

Appendix G carries out the cross product process similar

to Eq 3-48 for all SSP subsystem corners and gives the

rotational differential equations. As is done in Appendix

F, the equations are separated into the 61 , 62 and 63 degrees

of freedom with the cross coupling term indicated.
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Summary

The differential equations developed in Chapter III

and tabulated in Appendix F - Translation and Appendix

G - Rotation are the linearized differential equations

describing the upper, lower and pier level perturbed

motions. These motions are for a constant mass system

about a nominal position in each body's center of mass.

No acceleration terms due to gravity are present, because

the variance of gravity is small and the nominal

orientation is an equilibrium state where all gravity

forces, isolator forces, and actuator forces result in

the nominal position.

Close examination of the translational differential

equations in Appendix F clearly show the X and Y directions

to have 0 cross coupling terms. The Z direction has cross

coupling terms from and 4. These observations hold for

all three levels and is a physical check of the described

motions.

Similarly, Appendix G shows the rotation differential

equations for each level to have cross coupling present.

The * and 4 have Z cross coupling influences and 0 has X

and Y cross coupling components.

Chapter IV evaluates the passive response using Laplace

operator solutions of the SSP differential equations in

the frequency domain. Chapter V converts the SSP differential

equations into state space notation for time response analysis
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using LQ synthesis. The next chapter highlights the

SSP passive response to gain insight into the actual

controller problem analysis in Chapter V.

The dynamics equations written for the SSP give

insight to the "leveling problem" for adjusting isolator

height. A nominal position would imply that height of

the isolators would already place a level in equilibrium.

For the study, a nominal position is assumed and the

isolators adjusted or leveled. The differential equations

in Appendix F and G could be analyzed in terms of each

corner relative to the level center of mass to describe

any "leveling" induced motion.
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IV. SSP Passive Response

Introduction

Before designing an active controller, the SSP passive

response is analyzed to identify resonant frequencies and

their effects on magnitude and phase responses. On the

basis of the passive response characteristics, the

systems poles and zeros then give possible insight for

reduced order approximations in Chapter V, SSP Active

Controller Design.

Simple mass, spring and damper networks are investigated

and their characteristic Laplace solutions are related

to the differential dynamic equations resulting from Chapter

III.

Once the vibration transmissibility concept is

developed, the lumped spring and damper parameters are

entered into the transmissibility expressions for each of

the six degrees of freedom to obtain the system passive

response with the controller actuators deactivated. Various

isolation levels are modeled to identify dominant SSP

dynamics and possibly explain passive responses actually

measured by CTGIF.

Before the simple mechanical models are studied,

analysis assumptions and methods are presented.
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Analysis Method and Assumptions

The passive analysis implies no controller actuator

forces and represents the SSP system open loop transfer

function. For the passive response, the SSP symmetry

cancels any translation or rotation coupling, since all

isolators are equidistant from the body centers of mass.

In Chapter III, Dynamics Analysis, the pier center

of mass is assumed in the plane of the lower level isolators.

The pier is modeled as a plane having a lumped parameter

for inertia about the Z direction (e3) with equivalent

spring and damper matrices representing soil dynamics in

the vertical direction on each corner. Another simplifica-

tion is also made for the moment of inertia in the (e2 )

direction by using the same lumped parameter given for the

X(e,) direction. Spring and damper matrices in the two

horizontal directions - North and South, East and West - are

equated to the values calculated for the X(el) direction.

These pier simplifications basically consider the X and Y

translation dynamics as well as the p and 4 rotation dynamics

the same. In contrast, the pier simplifications are made by

assumption for analysis convenience, while the upper and

lower level dynamics are the same for X, Y and p, 4 directions

by symmetry. The pier simplifications are detailed in

Appendix E and do not impact on active controller design

because measured pier effects are above controller bandwidth

at 200 Hz (Ref 19). To standardize the dynamics qualitatively,

the transmissibility concept is defined next.
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Transmissibility is in general a transfer function or

ratio between input and output vibrations or displacements

(Ref 17:16). Expressed in the frequency domain, transmissi-

bility is written as a transfer function

x0 (jw)
T(jw) = (4-1)

where, as functions of frequency

x 0 (jW), output

xl(jw), input

T(jw) , transmissibility transfer function

Transmissibility logarithmic magnitude and phase

angle for Bode plot representation are written as

LmT(jw) = 20 log dB (4-2a)xl (jw)

T(jw) = tan-1 Im[T(jw)] (4-2b)
Re[T(jw) ]

where,

LmT(jw), log magnitude, base 10, decibels

T(jw), phase angle, degrees

Im, Re , imaginary, real part rectangular components.
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Vibration transmissibilities (Ref 17:16) can represent

displacement responses, but also velocity and acceleration.

By assuming T(jW) to be a linear transfer function and

sinusoid velocity or acceleration inputs, the displacement

derivative responses are easily obtained. This assumption

is commonly made in seismology studies for low frequency

Earth movements which are naturally free of high frequency

components (Ref 17:16). For the SSP, the acceleration

transmissibility responses are needed for the translation

passive responses and are easily implied from displacement

transfer functions. The SSP rotational passive response

is obtained directly from the angular position of tilt

transmissibilities. Once transmissibility transfer functions

are computed for the six SSP degrees of freedom, probable

acceleration (by approximation) and tilt responses are

available.

Transmissibility magnitude Bode plots are also a

convenient representation of power spectral density (PSD).

Mathematically the two are related as

PSD(jw) = 10 log [= 20 log

(4-3)
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The acceleration SSP specification for all axes is a

PSD requirement in terms of root mean square (RMS). Accelera-

tion RMS calculations are not made because of available

computer software, so only peak transmissibility values are

considered.

Simple Three Mass, Spring and Damper Networks

A simple three mass network shown in Figure 4.1 offers

considerable insight into the transmissibility differential

equation solution of more complex networks such as the SSP.

From Figure 4.1, the one degree of freedom, Z trans-

lational differential equations can be written for the

three masses using F = ma. All accelerations are inertial-

Earth frame with all masses constant. A displacement input

ZG is assumed as shown. The equations of motion for the

three masses are

00mUz u = c s ( z L - z U  + k s ( z L - z U )  (4-4)

00 0 0

mLzL = -cS(zL - zu) - kS(zL - zu)
0 o

+CF ( p - ZL) + kF(zP - zL) (4-5)

mpZp = -CF(zPzL) - kF(zp - zL)

0 0
+CG(zG - zp) + kG(zG - zP) (4-6)
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m U z U

mL L

k F C F

MP P

kG k G

r- ZG

mU ,upper mass

mL , lower mass

mp ,pier or seismic mass

ks, cS , second stage isolation

kF, CF , first stage isolation

kG' cG ground isolation

Figure 4.1 Simple Three Mass Network
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Eqs (4-4), (4-5) and (4-6) are rearranged and written

in Laplace notation, assuming zero initial conditions.

ZU (s) (%ms2 + c~s + ksS] = ZL(s) [cSs + k] (4-7)

ZL(S) [Mes2 + (cF + cs + (k F + ks)] ZpS[CFs + kF

+ Zu(s)[CsS + ks] (4-8)

Zp(S)[mps 2 + (c + CF)S + ( k + kF)] =

2(s) [cGs + k] + ZL(s) [cFs + kF)' (4-9)

Eqs (4-7), (4-8) and (4-9) are rewritten with variables

representing the bracketed terms in preparation for algebraic

manipulations; these equations follow term for term below:

ZU(s) [a] = ZL(s) [b] (4-10)

ZL(s)[e] = Zp(s)[c] + ZJ(s)[d] (4-11)

Z p(s)If] = Zt(s) [g] + ZL(S ) [h] (4-12)

Solving these expressions for the transmissability i (s)/

(s), the transfer function is

48



Zu (s) bcg (4-13)

Z G(S) aef - b 2 f - c 2 a

which is the basic form

ZU(S) (c s + ks) (cFs + kE) (cGs + kG)

ZG (s) (mU...) (mL...) (Mp.. .)-(CG s + kS )2 P -.)

_(cFs + kF ) 2 U -. )

(4-14)

Eq 4-13 with the indicated operations carried out

to obtain a ratio of polynomials, becomes a transfer function

of the following form,

Zu(S) As3 + Bs 2 + Cs + D

ZG(S) Es 6 + Fs s + Gs 4 + Hs 3 + Is2 + Js + K

(4-15)

The polynomial coefficients of Eq 4-15, A thru F are tabulated

in Appendix H in terms of the variables for this simple

system once the spring, damper and mass variables are

specified.

Now that a scalar Z transmissibility transfer function

solution is available in Eq 4-15, the translation equations

of Chapter III and Appendix F are reexamined. Eq 4-4 is
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repeated again in differential equation form (terms

collected).

00 0 0

mUU = -CsZU - kSZU + CSZL + kSzL (4-16)

Now consider the mU component of e3 in Eq F-I1,

no rotation coupling terms, and actuator forces zero.

00 0 0

mUzU = -4csz U - 4ksZU + 4cSZzL + 4kSZZL (4-17)

The scalar development of three mass networks represented

in Eq 4-16 characterizes the forms given in Appendix F.

Namely, the simple cS second stage damper parallels the SSP

second stage by a factor of four, which is physically

reassuring, since the SSP second stage has four isolators.

Extended further, Appendix H gives the solution for three

stages of isolation, no rotational coupling, no active

control actuator forces by the simple substitution:

4c sz cs  (4-18a)

4ksz 4 kS (4-18b)

4c FZ c F  (4-18c)

4k -* kF  (4-18d)
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4cGZ c cG (4-18e)

4k GZ kG  (4-18f)

The same parallel differential equation structures

exist for the 61 direction in Eqs F-5, F-6, and F-7.

Similarly, the 62 direction has the same solution form by

using Eqs F-8, F-9 and F-10.

For the rotational differential equations developed

in Appendix G, the parallel solution can be extended again.

Eq 4-16 is repeated.

00 0 0

mUzU = -csZ 0 - kszu + cSZL + kSzL (4-16)

If Eq G-9, the IUZ component of Ois rewritten with

C SX= cSY and all isolator lengths 1UN =I =1 UW = 1,

because of symmetry, the following rotational equation

results.

Iuz U = -4csx1 20o - 4kSXlU (4-19)

0
+4csxl2OL + 4k sx120 U

Now a solution for the 3 direction is readily available

by simple substitution.
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Iuz mU  (4-20a)

4c sx12 C s  (4-20b)

4ksx 12 ks (4-20c)

4cFX12 cF (4-20d)

4kFX1 2  kF (4-20e)

4cGXl 2  CG (4-20f)

4kGx 12 kG  (4 -20g)

Physically this follows from the SSP dynamics because

the cSx, kSX , cSy and k vector springs and dampers act

as four individual components about the e axis for 0 in

the upper level rotational dynamics. Similar analogies

can be made for the lower level and first stage isolation

effects.

These substitutions do not hold for iP and 4 The

Iux component of * , Eq G-7 is rewritten using the same

assumptions used in IUZ

00 0

I = -2C 1 szI2u - 2ksz1 2o u
0

+2cSz 2WL + 2kszl 2L (4-21)
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The i substitution becomes:

IUX mu  (4-22a)

2c sz12 c (4-22b)

2k sz12 k s  (4-22c)

2c FZ12 cF  (4-22d)

2k Fz12 k F  (4-22e)

2c GZ12 c G  (4-22f)

2kGz 12 kG  (4-22g)

The rotational spring and damper equivalents are halved

because the c SZ and k dynamics act in pairs on opposite

corners in a see-saw fashion about e1 for t and 6 2 for 0

in the upper level. Similar comparisons can be made for the

lower level and pier rotational equations.

Deriving the Eqs 4-7 through 4-16 is only a vehicle

for solving the three mass isolation networks. The parallel

made between Eqs 4-16 and 4-17 gives very realistic insight

into solving the d 3 equations found in Appendix F. When

the 0, and q differential equation coefficient substitu-

tions are made, these scalar variables become rotational

springs and dampers and the Z notation of Eq 4-16 represents

just a scalar variable, with no translation implications.
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SSP Full Isolation

With the insight and substitutions gained from three

simple mass, spring and damper networks, the SSP full

isolation offered in the X(61 ), Y(62 ) and Z(83) translation

directions as well as the (61), c(62) and 0(83) are

evaluated. The transmissibility concept will provide

transfer functions in the required directions using the

physical spring and damper values in Appendix E, the

polynomial solution in Appendix H and the substitutions

just derived by the simple mechanical network analysis.

Each transmissibility is defined in the frequency

domain from the solution polynomial and expressed in a factored

form and a Bode plot from TOTAL (Ref 9). Actual polynomial

coefficients are listed in Appendix I. Table 4.1 summarizes

break frequencies, phase margins, gain margins and general

low pass attenuation offered. An expression for each

SSP directional transmissibility is now listed along with

an accompanying plot reference.

Z-Response (Full Isolation)

TZU/G(jw) = ZU (jw)/ZG(jw)

= 223.3(jw + 128.5) (jw + 188.5)2

(jw + 0.1882 ± j8.421)

X (9w + 1.715 ± j25.37)

X (jw + 86.47 ± j121.4) (4-23)

Bode plot is shown in Figure 4.2.
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X-Response (Full Isolation) (also Y-Response)

TX UG(jW) =x U (w)/X G(jW) Y U(w/ W

= .606.8(jw + ]99.6)(jio + 397.9)(jw +418.9)

Ojw + 0.4080 ± j18.21)

X (jw + 3.718 ± j54.94)

X (ito + 50.17 ± j132.5) (4-24)

Bode plot is shown in Figure 4.3.

Theta-Response (Full Isolation)

TO UG (OW) =0 U(iW)/O G OW)

- .(886_.4(jto + 199.6) (juw + 397.9) (jw + 418.9)

(jw + 0.8367 ± j126.07)

X (ito + 15.65 ± j78.52)

X (jw + 8.684 ± j81.78) (4 -25)

Bode plot is shown in Figure 4.4.

PSI-Response (Full Isolation) (also PHI Response)

= 590.1(jw + 1213.5)(jo + 188.S)2

(ito + 0.42 ± j12.57)

X (jw + 4.159 ± j39.37)

X (ito + 42.23 ± j95.24) (4-26)

Bode plot is shown in Figure 4.5.
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p.

Full Isolation Analysis

The theoretical magnitude and phase plots are plotted

using Eqs 4-2a and 4-2b respectively. Tabulated values for

Table 4.1 are obtained from TOTAL to the indicated magnitude,

and frequency resolutions. Analysis conclusions are stated

now for each direction.

The full Z isolation position resonances are theoretically

at 1.3 Hz and 4.0 Hz which compares closely with the vertical

acceleration resonances at 1.2 Hz and 3.5 Hz measured by

FSJRL engineers (Ref 19). A phase shift is at 2.0 Hz with

a measured 1800 phase shift at about 1.0 Hz measured at CIGTF

(Ref 19). These good correlations give validity to the SSP

dynamics modeling approach for acceleration transmissibilities.

No measurements are available from CIGTF for X and Y

acceleration transmissibilities. Figure 4.3 predicts the

X transmissibility as well as the Y transmissibility due to

the symmetry of lumped spring and damper dynamic matrices.

Theoretical horizontal position resonances are at 2.9 Hz and

8.6 Hz.

The 0 direction has azimuth resonances predicted at 4.1 Hz

and 12.0 Hz but no measurements are available. Transmissi-

bilities for 4 and are the same due to symmetry with

resonances predicted at 2.0 Hz and 12.0 Hz. No tilt trans-

missibility measurements are available for the SSP. The 0

direction has a small gain margin and phase margin while the

direction has gain and phase margins comparable to the Z and

X directions. Table 4.1 summarizes these points. No input
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signal magnitudes are specified because the transfer

function is calculated for a normalized response.

Time response characteristics from TOTAL resulting from a

unit step input are given in Table 4.2 for all full isolation

transmissiblity functions. These time responses only emphasize

the lightly damped dynamics of the SSP. Unit step responses

specify no input magnitude since they also can be scaled or

normalized for a linear system

Simple Two Mass, Spring and Damper Network

Similar to the three mass solutions just derived for

the full isolation transmissibility transfer function, a two

mass system is analyzed. Two mass, spring and damper models

characterize transmissibilities result from the three SSP

levels of isrlation in active isolation combination two at

a time. In actual operation, the SSP could have one level

of pneumatic inoperative or the SSP dynamics could be evaluated

neglecting the pier isolation. The possible scalar combinations

for the Z direction are shown in Figure 4.6. Again, the

whole driving force behind the scalar development is to

characterize the differential equations, use the substitutions

recognized in Eqs 4-18, 4-20, and 4-22, and offer solutions

for the needed transmissibility transfer function. The

scalar Z is used because it is easier to visualize without

complex free body diagrams and it parallels easily into

the SSP Z direction solution.
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k S S

P ~ z

Figure 4.6A SSP Isolation

k F C F

m p

kG G

Figure 4.6B First Stage/Pier Isolation
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kZ uks Cs
mL

kG cG

zG

Mu ,upper mass

mL lower mass

MP ,pier or seismic mass

ks, c S , second stage isolation

kF# cF , first stage isolation

kG, cG , ground isolation

Figure 4.6C Second Stage/Pier Isolation
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SSP Isolation

Figure 4.6A shows no pier dynamics or just the SSP

structure upper and lower levels. The F = ma differential

equations for the two masses are

00 0 0
mUz u = cS(zL - zU) + ks(zL - zU) (4-27)

00 0 0

mLzL = CF(zP - zL) + kF(zP - zL)

0 0
-Cs(z L - z U ) - ks(z L - z ) (4-28)

Rearranging Eqs 4-27 and 4-28 and using the Laplace

operator, zero initial conditions, and some algebraic

manipulation, the transmissability function becomes

Zu(S) - as 2 + bs + c (4-29)

Z (S) ds4 + es 3 + fs2 + gs + h

where the numerator and denominator polynomial coefficients

are

a = cFcS (4-30a)

b = cFkS + cSkF (4-30b)

c = kFkS (4-30c)
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d = mUmL (4-30d)

e = mU(cF + cS ) + mLcS (4-30e)

f = mU(k F + kS ) + cFCs + mLkF (4-30f)

g = b (4-30g)

h = c (4-30h)

A solution similar to Appendix H, the full isolation

solution is now available. To solve all four transmissibility

functions - Z, X(or Y), 0 , and i(orf) substitutions from

Eqs 4-18, 4-20 and 4-22 are used.

First Stage/Pier Isolation

Figure 4.6B shows the second stage isolation inactive.

The configurations have a solution of the form given in

Eq 4-29 with the polynomials described by Eq 4-30. If the

following scalar variable solutions are made, the

transmissibility transfer function is easily obtained.

mu + m L mu  (4-31a)

m P mL (4-31b)

kF kS (4-31c)

c F c s  (4-31d)

kG kF (4-31e)

c G  4 cF (4-31f)
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Now the scalar change of variables are transformed,

the same substitutions made in Eqs 4-18, 4-20 and 4-22

are used.

Second Stage/Pier Isolation

Figure 4.6C shows the first stage isolation inactive.

The following scalar variable substitutions are made in

the polynomials described in Eq 4-29.

m L + m + mL (4-32a)

k G kF  (4-32b)

cG cF  (4-32c)

As is done in the other configurations, the same

substitutions made in Eqs 4-18, 4-20 and 4-22 are used.

Transmissability transfer functions in factored form are

obtained from TOTAL. Polynomial coefficients are listed

in Appendix I. Bode plot references are indicated,

frequency performance data and unit step time response

information are listed in Tables 4.3 and 4.4, respectively.
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Table 4. 3

Dual Isolation Frequency Characteristics Summary

T (jwj) GM(f) PM(f) f(MP)

TZ U/(iW) 5.25db( 3.0 Hz) 5.710(2.0 Hz) 1.3 Hz( 23.57dB)
U/P4.0 Hz(-0 .43dB)

TZ L/(jW) 39.68db(23.0 Hz) 9.420(2.6 Hz) 1.8 Hz( 24.50dB)
L/P22.0 Hz(-38.93dB)

TZ U/(iW) 38.lldb(21.0 Hz) 9.420(2.6 Hz) 1.8 Hz( 24.50dB)
U/p22.0 Hz(-38.lldB)

TX U/(iW) 5.29db( 6.5 Hz) 5.39O(4.5 Hz) 2.9 Hz( 27.99dB)
U/P8.6 Hz(- 0.46dB)

TX L/(iW) 18.62db(14.0 Hz) 8.900(5.5 Hz) 3.8 Hz( 24.63dB)
L/P16.0 Hz(-20.24dB)

TX U/(iw) 17.46db(14.0 Hz) 8.70'(5.8 Hz) 4.0 Hz( 24.69dB)
U/G20.0 Hz(-22.08dB)

TO U/P(jW) 6.32db( 9.8 Hz) 7.100(7.0 Hz) 4.2 Hz( 24.30dB)
13.0 Hz(- 4.56dB)

TO L/(jW) 0..83db( 8.9 Hz) 4.20'(9.5 Hz) 5.0 Hz( 15.78dB)
L/P10.0 Hz(- 0.71dB)

TO U/G(jW) 2.07db( 8.8 Hz) 22.120(11.0 Hz) 5.7 Hz( 23.21dB)
12.0 Hz(- 1.92dB)

Tip~1 (jw) 6.33db( 4.7 Hz) 8.300(3.1 Hz) 2.0 Hz( 24.45dB)
6.1 Hz(- 4.57dB)

T PL/P(iw) 20.97db(13.0 Hz) 13.500(4.0 Hz) 2.7 Hz( 21.04dB)
14.0 Hz (-22.99dB)

TPU,/G(jW) 21.22db(12.0 Hz) 13.400(3.9 Hz) 2.7 Hz( 20.99dB)
13.0 Hz (-22.2SdB)

where,

GM, gain margin PM, phase margin MP, magnitude peak

AS, attenuation slope approximate leaving MP, towards
positive increasing frequency

T(jw), transmissability frequency function

(Ref 6:82)
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Z-Response (SSP Isolation)

TZu/p(jW) = Zu(j)/Z (jW)

= 1.292(jw + 188.5)2

(jw + 0.1883 ± j8.422)(jw + 1.716 j 925.37)

(4-33)

Bode plot is shown in Figure 4.7.

Z-Response (First Stage/Pier Isolation)

TZ L/p OW ) = z L OO) /Z G (j '.)

= 117.3(jw + 128.5)(jw + 188.5)

(jw + 0.3391 ± j11.30)(jw + 86.47 ± j121.4)

(4-34)

Bode plot is shown in Figure 4.8.
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Z-Response (Second Stage/Pier Isolation)

TZu/G (jW) = ZU (9W)/ZG(jw)

= IlI.2(jw + 128.5)(jw + 188.5)

(jw + 0.3392 ± jll.30)(jw + 82 ± j119.8)

(4-35)

Bode plot is shown in Figure 4.9.

X-Response (SSP Isolation)

TXu/p (j w) = Xu (i w)/XP (j W) YU(j i w)/YP(jw)

= 6.061(jw + 397.9)(jw + 418.9)

(jw + 0.4079 ± j18.23) (jw + 3.717 ± j55.00)

(4-36)

Bode plot shown in Figure 4.10
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X-Response (First Stage/Pier Isolation)

TXL (OW) = XL (jW)/Xp (ji() = YL (j(0)/Y (jW)

= 143.4(jw + 199.6)(jw + 397.9)

(jw + 0.1763 ± j23.81)(jw + 50.17 ± j132.5)

(4-37)

Bode plot shown in Figure 4.11.

X-Response (Second Stage/Pier Isolation)

TXU/G (j) = XU (W)/XG (j) = YU (jW)/YG(jw)

143.2(jw + 199.6)(jw + 418.9)

(jw + 0.7543 ± j25.08)(jw + 47.55 j 9129.4)

(4-38)

Bode plot is shown in Figure 4.12.
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Theta-Response (SSP Isolation)

TOu/p (jW) = Ou(jW)/p (j)

= 2 7.6 6 (jw + 397.9)(jw + 418.9)

(jw + 0.8363 ± j26.10)(jw + 8.273 + j81.81)

(4-39)

Bode plot is shown in Figure 4.13.

Theta-Response (First Stage/Pier Isolation)

TOL/p (W) OL (jW)/0 P(jW)

= 96.53(jw + 199.6)(jw + 397.9)

(jw + 1.508 ± j34.50)(jw + 16.06 + j78.57)

(4-40)

Bode plot is shown in Figure 4.14.
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Theta-Response (Second Stage/Pier Isolation)

TOU/G(9W) = 0U (jw)/OG(9O)

= 97.34(jw + 199.6)(jw + 418.9)

(jw + 1.532 ± j35.71)(jw + 15.92 j j78.23)

(4-41)

Bode plot is shown in Figure 4.15.

PSI-Response (SSP Isolation)

T4U/p(jw) = u(i /p(9W) = P(9W)

= 6.99(jwO + 188.5)2

(jw + 0.4201 ± j12.58)(jw + 4.160 ± j39.38)

(4-42)

Bode plot is shown in Figure 4.16.
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PSI-Response (First Stage/Pier Isolation)

ToL/p (jW) = L (jw)/ p10P() = L (jw)/p (jW)

= 131.1(jw + 128.5) (j + 188.5)

(jw + 0.7764 ± j17.09)(jw + 42.23 j j95.24)

(4-43)

Bode plot is shown in Figure 4.17.

PSI-Response (Second Stage/Pier Isolation

T U/G (jW) = U (j )/G (jW) = uOWM)/G OjW)

= 125.2(jw + 128.5)(jw + 188.5)

(jw + 0.7496 ± j16.79)(jw + 41.77 ± j94.82)

(4-44)

Bode plot is shown in Figure 4.18.
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Dual Isolation Analysis

Two important results are gained from the analysis of

the dual isolation configurations. First, the SSP isolation

dynamics do dominate the passive transmissibility responses.

Secondly, the small gain and phase margins are directly

attributable to the SSP isolator dynamics.

Table 4.3 summarizes the frequency characteristics for

the dual isolation response. The Z direction is a good example

of the SSP isolation dynamics role. The SSP isolation

dynamics in the Z direction compare directly to the theoretical

first and second resonant peaks discussed for the Z full

isolation, clearly showing the dominance of the SSP isolation

over the pier dynamics. When the first stage or the second

stage isolation are considered with the pier, the pneumatic

isolator dynamics dominate and compare exactly to the isolator

vertical design frequency in Appendix E. The second resonance

of either isolation stage and the pier dynamics is at 22 Hz.

The SSP isolation configuration in the Z direction has

the same small gain and phase margin as did the full Z

isolation case. Only when one level of pneumatic isolation

is considered does the gain and phase margin increase as

shown in Table 4.3.

The same SSP isolation dynamics analysis and results

can be extended for the X (or Y), 0 and *(orf) directions.

A summary of unit step responses from TOTAL for the dual

isolation configurations are presented in Table 4.4. Clearly,

the long settling times and peak overshoots are identified

with the SSP isolation dynamics.
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Simple Single Mass, Spring and Damper Networks

A single mass, spring and damper single level isolation

system is shown in Figure 4.19A. Figures 4.19B through

4.19D show the various SSP single level isolation config-

urations possible using the Z scalar derivations used in

the other simple three and two mass mechanical networks.

The position transmissibility for Figure 4.19A is written

in Laplace operator notation, zero initial conditions:

Z2 (S) cs + k (4-45)

Z1 (s) ms 2 + cs - k

Or in the frequency domain, the transmissibility

is written as

Z 2 (jW) = cjw + k (4-46)

Zi(jW) mjw 2 + cj + k

The transmissibilities for the various single levels

are solved by substituting the active SSP isolation level

spring and damper for k and c respectively. The mass, m,

simply becomes the total mass supported by the isolation

level. These substitutions are summarized for the indicated

figures as follows:
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m 2

1,. C

-zi

Figure 4.19A Simple Mass, Spring an~d Damper Network

mu zU

k SC s

m L Z L
m P

Figure 4.19B Second Stage Isolation
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m L L

k FcP

Figure 4.19C First Stage Isolation

ML z

k GcG

G G

Figure 4.19D Pier Isolation
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Figure 4.19B mU U m (4-47a)

c S c (4-47b)

ks k (4-47c)

Figure 4.19C m U + mL m (4-48a)

cF + c (4-48b)

kF k (4-48c)

Figure 4.19D m U + mL + mp m (4-49a)

c G  c (4-49b)

kG - k (4-49c)

Once the scalar substitutions have been made, appro-

priate parallel forms are identified as s done for the

other networks using Eqs 4-18, 4-20 and 4-22.

The three transmissibilities just solved are now

expressed in factored form for the six degrees of freedom

with Bode plot references given. Tables 4.5 and 4.6

summarize key frequency and unit time response performance

values, respectively.
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Table 4.5

Single Isolation Frequency Characteristics Summary

T(jw) Resonant Frequency Peak Magnitude

TZU/L(jW) 1.8 Hz 24.45dB

TZL/P(jW) 1.8 Hz 24.45dB

TZP/G(jW) 19.0 Hz 3.01dB

TXU/L(jw) 4.0 Hz 24.45dB

TXL/P(jW) 3.8 Hz 24.45dB

TXP/G(jW) 19.0 Hz 5.42dB

TOU/L(jW) 5.7 Hz 21.39dB

TOL/P(jW) 5.5 Hz 21.25dB

TOP/G(jW) 20.0 Hz 8.79dB

Ti U/L(jW) 2.7 Hz 20.78dB

T L/P(jW) 2.7 Hz 20.79dB

TipP/G(jW) 15.0 Hz 4.37dB

where,

T(jw), transmissibility frequency function

(Ref 6:82)
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Z-Response (Second Stage Isolation)

TZ u/L(jW) = Zu (je)/ZL (jA)

= 0.6786(jw + 188.5)

(jw + 0.3393 ± jll.30)

(4-50)

Bode plot is shown in Figure 4.20.

Z-Response (First Stage Isolation)

TZ L/p (jW) = ZL (jw)/Zp (j)

= 0.6786(jw + 188.5)

(jw + 0.3393 ± jli.30)

(4-51)

Bode plot is shown in Figure 4.21.
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Z-Response (Pier Isolation)

TZ p/G(W) = Zp (jw)/ZG(jW)

= 150.0(jw + 128.5)

(jw + 74.99 ± j116.8)

(4-52)

Bode plot is shown in Figure 4.22.

X-Response (Second Stage Isolation)

TXu/L (j) = XU(jw)/XL(JW) = YU (jW)/YL (OW)

= 1.508(jw + 418.9)

(jw + 0.7540 ± j25.12)

(4-53)

Bode plot is shown in Figure 4.23.
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X-Response (First Stage Isolation)

TXL/P (W) XL (jW)/Xp (jO) = YL (jiw)/YP (jt))

- 1.433(jw_ + 397.9)

(jw + 0.7163 ± j23.87)

(4-54)

Bode plot is shown in Figure 4.24.

X-Response (Pier Isolation)

TX pI, (jW) XP(iW)/XG(jw) YP (jw)/YG (jW)

= 86.87(jw + 199.6)

(jw + 43.44 ± j124.3)

(4-55)

Bode plot is shown in Figure 4.25.
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PSI-Response (Second Stage Isolation)

T U/L (jw) = IU (w)/NL (jj)) U uW)/4L(JW)

= 1.50(jw + 188.5)

(jw + 0.7499 ± j16.80)

(4-56)

Bode plot is shown in Figure 4.26.

PSI-Response (First Stage Isolation)

T4L/p (jW) = L (j)/4 (j) = L (jW)/p (jW)

= 1.554(jw + 188.5)

(jw + 0.7768 ± j17.10)

(4-57)

Bode plot is shown in Figure 4.27.
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PSI-Response (Pier Isolation)

T P/G OW) = P (jw) / G (JL )  Pjw / p

81.75(jw + 128.5)

(jw + 40.88 - j93.98)

(4-58)

Bode plot is shown in 
Figure 4.28.

Theta-Response (Second Stage Isolation)

TOUIL (jW) = 0U (jUO L (jW)

= 3.061(jw + 418.9)

(jw + 1.530 ± j35.77)

(4-59)

Bode plot is shown in 
Figure 4.29.
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Theta-Response (First Stage Isolation)

TOL/p (j) = 0L OW)/aP (jW)

= 3.012(jw + 379.9)

(jw + 1.506 ± j34.59)

(4-60)

Bode plot is shown in Figure 4.30.

Theta-Response (Pier Isolation)

TOP/G (jW) = 0p (0)/0 G(OW)

= 31.32(jw + 199.6)

(jw + 15.66 ± j77.51)

(4-61)

Bode plot is shown in Figure 4.31.
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Single Isolation Analysis

Analysis of the full and dual isolation schemes clearly

demonstrates the dominance of SSP isolation dynamics. The

single level isolation configurations verify isolator design

considerations for translation resonances and yield some new

insight into rotational isolator effects.

Reviewing the contents of Table 4.5, the Z direction

resonant frequencies for the second and first stage isolation

are at 1.8 Hz; the intended vertical resonance for each isolator

calculated in Appendix E. Similarly, the X (or Y) direction

has resonant frequencies of 4.0 Hz and 3.8 Hz for second

and first stage horizontal single isolator resonances as

planned in Appendix E.

An interesting result of the rotational transmissibilities

is the rotational isolator dynamics. The 0 resonance is at

5.7 Hz and 5.5 Hz for the second and first stage resonances.

A difference in resonance frequency for the two levels is due

to loading effects on isolator stiffness as is presented in

the X direction between the second and first stage isolator

horizontal resonances. The (orp) direction has the same

resonant frequency of 2.7 Hz for both stages of isolation

which follows the same vertical frequency resonance for both

levels since the intended isolator vertical frequencies are

designed the same. In all, the translational and rotational

transmissibilities, the resonant magnitudes are nearly five times

greater for the second or first stage isolation dynamics

compared to the pier effects.
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In general, the pier dynamics are prominent at 20 Hz,

the upper limit of the active controller bandwidth. The

unit step time responses in Table 4.6 show the characteristic

slow time responses introduced by either the second or first

stage isolation dynamics.

Transmissibility Pole and Zero Analysis

The transmissibility transfer functions for the various

levels of isolation are analyzed for each of the six degrees

of freedom. For any direction, the full isolation case

represents the complete set of poles and zeros. By

eliminating an isolation level, the effects on the overall

transmissiblity can be verified.

The upper level dynamics in all directions predominate

the system performance. The lower level poles are possible

sources of instability as is discussed in Chapter V, with

the effects on the root locus. The pier dynamics do come

theoretically at the edge of the active controller bandwidth

at 20 Hz, but in actual measurements, the pier effects are

well above 200 Hz (Ref 18). Since the poles and zeros of

the various isolation levels do parallel those of the full

system, the solutions are verifiable. The slight differences

in pole and zero location are due to scaling caused by

different configurations having different applied loads.

The rotational transfer functions have an interesting

result. The 0 transmissibility zeros are the same as those

of the X or Y transmissibility zeros. Similarly, the
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and transmissibility zeros are identical to the Z trans-

missibility zeros because the same spring and damper dynamic

matrices are used in the 0 and X(or Y) or $(orf) and X(or Y)

transmissibilities.

The Z transmissibility and X(or Y) transmissibility

pole/zero analysis summaries are in Table 4.7 and 4.8,

respectively. For the 0 and i(orf) rotational transmissibility

pole/zero summaries see Table 4.9 and 4.10, respectively.

Several analytical checks are possible using the results of

these tables. First, the full isolation in any given

direction is equal to the combination of all three single

isolation levels. Secondly, the full isolation in any given

direction is equal to two levels of isolation plus a single

level of isolation in that direction. Care must be taken in

these calculations because the resonant frequencies (see

Eq 3-8) are a function of the isolator applied load. If

single levels are to be added for the full isolation verifica-

tion, each single level must consider the load applied to it.

Analyzing Figure 4.1 to emphasize the loading effect, the

second stage isolation load is mU while the first stage load

is mL (not mU + mL) and the pier stage load is mp (not

mp + mU + mL). Each pole and zero for the single stage

correspond exactly to the full isolation poles and zeros

when properly loaded. This verification is reassuring for

the transmissiblities methods used and the physical

intuition of the SSP. This verification was used successfully
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during the early phases of the study to check the various

transmissibility solutions.

Besides an interesting analytic check, the poles and

zeros typify the resonant frequencies and responses for a

given isolation configuration. These level traits are used

extensively in Chapter V to build active controller designs.

Summary

A thorough passive response study for each level is

not done for two reasons. First, the pneumatic isolator

and seismic pier soil characteristics are not known precisely;

so approximating the SSP performance on the basis of

equivalent lumped parameter springs and dampers would only

be a qualitative treatment. Secondly, the theoretical

SSP frequency responses can give only general insight into

problems faced by the active digital controller. Chapter

V does expand on the directional transmissibility poles and

zeros using root-locus concepts (Ref 4:203). Other important

points gained from the passive frequency responses are now

summarized.

The pneumatic isolators do have individual resonant

frequencies for the upper and lower levels taken separately

(single stage isolation) of 1.8 Hz for the vertical direction

and 3.8 Hz and 4.0 Hz for the horizontal motion (single

stage isolation) for the first and second stages, respectively.

The full isolation theoretically results in the first cutoff

at 1.3 Hz and second at 4.0 Hz. Actual SSP measurement at
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Holloman by FJSRL engineers calculated (Ref 19) vertical

frequency breakpoints at 1.2 Hz and 3.5 Hz.

Rotational isolator dynamics have not been specified

by MAC, but theoretical 0 resonant frequencies of 5.7 Hz

and 5.5 Hz for second and first stage isolation and 2.7 Hz

for ip transmissibilities (both stages) are predicted.

In general, the poles and zeros do analytically follow

from one (direction) isolation configuration to another in

the complex frequency plane characteristics, when the

appropriate load scaling effects are considered. The

transmissibility solutions are mathematically and dynamically

correct.

Eq 4-35 is repeated for convenience as

TZU/G(jw) = ZU(jW)/ZG(jW)

= iii.2(j + 128.5)(iw + 188.5

(jw + 0.3397 ± 9ll.30)(jw + 82 ± j119.8)

(4-35)

Using the straight line approximations (Ref 6:255),

the Eq 4-35 denominator presents positive slopes of 40 dB

while the numerator gives slopes of negative 80 dB which

results in a second order response. The denominator effects

do not become prominent until 20 Hz. To explain the

"second order response" measured at CGTIF (Ref 19) the Z
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response (SSP Isolation), Figure 4.2 is analyzed. A

-30 dB slope approximation is measured by FJSRL engineers

(Ref 19) for the vertical direction. The two second order

responses theoretically at 1.3 Hz and 4.0 Hz or measured

at 1.2 Hz and 3.5 Hz (Ref 19) cause large magnitude overshoots

which would distort any straight line approximation over

such a narrow bandwidth.

Based on the frequency analysis, the active LQ

controller synthesis first considers the second stage

dynamics. The reduced order controller is compared to a

truth model representing the SSP dynamics, neglecting 
pier

dynamics. Also from a classical controls viewpoint, the

active controller design is a difficult problem with the

small phase and gain margins theoretically present for 
the

full SSP isolation system.
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V. Active Controller Design

Introduction

An active digital controller is designed using Linear

Quadratic (LQ) synthesis techniques based on several alternate

descriptions of the SSP dynamics. These alternatives arise

by considering the SSP isolation in the passive response

analysis along with the dominance of the upper level resonances.

The use of the upper level actuators is expanded as a serious

controls issue by including additional active control

actuators between the lower level and the pier.

Each alternative is developed using standard state

variable notation and partitioned submatrices from the

differential equations written to describe the SSP dynamics

in Chapter III. A simulation of isolator misalignments is

included to evaluate translational and rotational cross

coupling effects.

A linear quadratic cost function and control law is

defined to design a digital controller to meet the required

SSP performance specifications. A general procedure is

outlined for controller design process along with design

policy based on general SSP dynamics constraints. Each

controller is then designed and analyzed with classical

theory cited to reinforce the digital performance. Now, the

SSP state representation is discussed for the continuous

time domain.
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SSP State Space Representation

The dynamics of the SSP describe a linear time invariant

system using standard state variable notation (Ref 6:27, 12)

as

X(t) = A X(t) + B U(t) (5-1)

0

X(t) = C X(t) + D UJ(t) (5-2)

where X(t), state vector derivative with respect to

time, column vector

X(t), state vector column vector

A, square matrix, order equal to dynamics
states of system (n)

B, input control matrix, n X r, where r is
number of controls, n is order of system

C, output matrix, p X n, where p is number of
desired outputs, n is order of system

D, feed thru matrix, p X r, represents controls
appearing in output

All the time dependence notation is later dropped for

convenience but is still implied. All derivatives are with

respect to time, an inertial reference frame, with constant

mass, nominal perturbed position and initial conditions as

indicated. The SSP state vectors and the A system matrix are

now defined in partitioned form using SSP generic state

variables as
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RX X
x x

y y

X and X= Xz z

~x

X x

0 (5-3)

where,

Xx' Xy' and X m are generic state variables for translation
motion

X,J X,, and X0 are generic state variables for rotation
motion

A 0 0 A XAx O xO

A y 0 0 0 AyO

A A Az A zA =z ZJ

0 Az A 0 0

0 Az 0 A 0

A AOx A 0 0 A0  (5-4)

where A, system matrix

A , A , A , represent translation dynamics

A ,A 0 , represent rotation dynamics

Ax0 ,Ay() represent translation-rotation

A , A cross coupling dynamics

A , Az , represent rotation-translation

A Ox A cross coupling dynamics

0, represents zero matrices
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For each candidate controller proposed, various A

partitions and state vectors are rewritten into either

reduced order controller models or partitions representing

a specific controller loop (really a single degree of

freedom). The state vectors and A matrix partitions are

expanded in Appendix J. The A matrices based on coeffi-

cients specified in Appendix F and G, are rewritten in state

form for Appendix J. To simulate the cross coupling terms,

isolator misalignments are simulated under random isolator

placement deviations of plus or minus a one-half inch over

a uniform distribution. Cross coupling coefficients are

also given in Appendix J along with the simulated isolator

placement distances.

As each controller design is discussed, the B, C, and D

continuous time matrices are derived for the LQ synthesis.

Root locus and Nichols plots are made from TOTAL using

classical techniques to predict controller performance and

stability. In each case a basic controller structure is

developed along with a truth model structure reflecting

cross coupling effects.

Six basic controllers are developed, one for each of

the six degrees of freedom - three translational (X, Y, Z)

and three rotational (p, , C). Six independent control loops

are derived using second and first stage (SSP) isolation.

Truth models are derived using particular controller loops

and the appropriate simulated cross coupling terms. Reduced
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order models are derived from the SSP isolation configurations

by recognizing the dominance of the second stage isolation

dynamics from the transmissibility and pole-zero analysis

in Chapter IV. Next the LQ design philosophy is specified

along with a description of the proposed control law structure.

Linear Quadratic (LQ) Synthesis

Of the numerous digital controller design methodologies

available, linear quadratic synthesis offers an optimum

controller derived on the basis of system state description

and a direct interaction with a performance index. Classical

theory (Ref 6:486) describes the performance index and cost

weighting matrix applied to continuous time controllers.

A LQ controller guarantees stability for any choice of

weighting matrices, using classical pole placement techniques

(Ref 12). A digital controller is proposed for the SSP

because of the system flexibility, expandability and desirable

control characteristics not found in analog controllers. In

either, the continuous or digital controller, the difficult

Riccati (Ref 6:495) equations are solved for the optimum

feedback solution. The digital solution is usually easier

to obtain than the continuous solution (Ref 12). Further

theoretical development on the LQ synthesis for digital

controllers is covered in reference 12. The LQ synthesis

used in this study is a proportional integral (PI) controller

which guarantees a type 1 property desired for disturbance
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rejection (Ref 12, 6:176). Integration of the controller

with the SSP physical system is shown in Figure 5.1. The

LQ-PI digital controller structure is based on a control

difference or "Pseudo-Rate" (Ref 12) whose characteristics

have a cost weighting matrix assigned to the system state

representation which is augmented to the control input rate.

This LQ-PI design assures zero steady state tracking and

a non-zero setpoint (Ref 12). The non-zero setpoint requires

the control input to keep the SSP in the nominal position

for which this study's dynamic model is valid. Secondly,

the zero steady state tracking works to keep the accelerations

and tilts for each axis within the performance required by

the specifications. The LQ-PI controller structure with

the SSP dynamics is shown in Figure 5.2A. The discrete

controller representation is shown in Figure 5.2B.

The LQ-PI controller design is driven by a cost

function described as

tn+l
c r_

c Y+UU dt (5-5)

t
0

where J, quadratic cost function

Y, system output desired

Yc' output cost weighting matrix

U, control input vector
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Uc , control cost weighting matrix

U, control input rate vector

Ur , control rate cost weighting matrix

T denotes transpose)

The quadratic cost function in Eq 5-5 provides the

pseudo-rate constraint by the Ur cost parameter. Since

constant gain matrices are desired for computation

simplification, the integration is carried out ignoring

a final transient in system performance and considers the

time interval to approach infinity for the steady state

system performance.

The digital Riccati (Ref 12) of Eq 5-5 specifies G*c

the optimum feedback gain. This feedback gain is shown

in Figure 2A separated into two separate partitions as

G*= [G* IG* 1 (5-6)c cI c2

The actual controller gain K and Kz of Figure 5.2B

is related to G* byc

[G] [GIIG] (5-7a)

= [Kx Kz ] I- B D (5-7b)

[KX KZ ] [7] (5-7c)
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where KX  , state feedback matrix

K z  , output feedback matrix

¢ , state transistion matrix

I , identity matrix

BD , discrete input matrix

CD , discrete output matrix

D , discrete feedforward matrix

U, X, D, have discrete time argument t. implied. These1

various forms are presented to simplify the

discussion later in the controller design process.

The feedback gains in KX and K would be actually

implemented in a real time SSP controller, while 11 in

Eq 5-7c represents the digital approximation of a continuous

time system for a given sampling frequency. The T symbol

in Figures 5.2A and 5.2B is the time delay between sample

periods and in a digital controller implementation is a

value held (delayed) in computer memory. Such diagrams can

be confusing, because, for instance, a value for the difference

of X(t i) and the output of a delay is indicated for Figure

5.2B. This difference is equal to the value of X(t i ) at

the time t i minus the value of X(ti ) - the output of the1 ~1i

delay from the last sample time.

The digital controller structure in Figure 5.2B

represents the following control input expression:
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U (t i ) = U (t. ) -K [X(t) - X(ti )]1-i X1

- Kz[CD DDI X(ti)

U(ti ) (5-8)

The closed loop eigenvalues of the system shown in

Figure 5.2B are (0 - BD G* which is shown from the following
C c

discrete state difference equations.

X(t ) = ti+1 ,t i X(t i )

+ BD ( t i ) [G*(ti) X(t i H (5-9a)

D+ 1 1 c 1

PD (ti t i  B B(ti G*(ti) X(t iDr  c

(5-9b)

If the system described by the state transition matrix

(, is stable, then the closed loop eigenvalues of the LQ-PI

structure are stable (Ref 12). Stability is addressed later

by controllability and observability issues in a general

design approach.

Digital Controller Design Assumptions

Several assumptions in the controller design are made

in the SSP configuration, controller performance evaluation,

and digital constraints. First the SSP configuration is

discussed.
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A full representation of the SSP would include upper

and lower level, and seismic block (pier) structural resonances,

as well as the first and second stage pneumatic isolator

and foundation soil dynamics. By assumption, the structural

resonant modes of the SSP are neglected in this study.

Similarly, the pier dynamics by actual transmissibility

measurements appear to be above the 20 Hz upper active

controller bandwidth. Theoretical pier investigations in

Chapter IV do place pier isolation effects at least on the

upper edge of controller bandwidth (Ref 1). Certainly

seismic disturbances would also need to be modeled if a

full truth model was intended. A truth model is a mathematical

representation which attempts to describe the known system

characteristics of a dynamic system. This study is concerned

with the goal of extending the -40 dB/decade (Ref 14:5)

transmissibility to lower frequency bounds than presently

possible with passive isolation. This study considers the

SSP truth model as the dynamics of the first and second

stage pneumatic isolator dynamics with cross coupling effects

generated by possible simulated random isolator misalignments.

Neglecting pier dynamics poses two significant

analytical dilemmas for the controller design. First, if

the pier adds no dynamics, it becomes part of the Earth

reference frame, or an inertial frame. The actuator must

be connected to some structure, the pier in this case.

Secondly, the actuators being connected to the upper level,

allow, in addition,a direct feedthrough force appearing
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directly as an acceleration (specific force) in the

translational motion and as a torque in the rotational

motion performance measurements. These points are

brought out in each controller design and assuming no pier

dynamics gives an optimistic controller environment. If

pier dynamics are allowed, they would appear transformed

directly on the upper level. A transformation would

occur simply because the actuator force is now with respect

to the pier coordinate frame, a non-inertial reference.

All expressions derived in Chapter III, Appendix F and G

are specifically derived for the equations of motion

describing the six degrees of freedom of the upper, lower

level and pier centers of mass with respect to the Earth

as an inertial reference frame. For the digital controller

design, the state representation of the SSP, considers the

pier as an inertial reference for the actuators, and includes

only the second and first stage isolation dynamics.

Controller actuators are proposed between the upper level

and pier (Ref 14). Lower level actuators are added for this

study based on physical intuition that more actuators

could better "steady" the lower level and the SSP.

To use the LQ synthesis technique, alternate represen-

tations of the SSP dynamics are developed for candidate

digital controllers by describing each in the state

notation of Eqs 5-1 and 5-2. Cost analysis is also proposed

for each in the forms needed by Eq 5-5. Actual controller
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design is done using a program CGTPIF (Ref 7) which has

an option which accepts continuous time system matrices

(A,B,C,D),cost criteria and yields a digital controller

as shown in Figure 5.2B. Figure 5.2B is a discrete

representation of the SSP dynamics and control law. No

digital approximations are made for the dynamics of the

analog to digital (A/D) converters. The sampling frequency

is 200 Hz which is selected to be ten times 20 Hz, the

highest frequency limit on the controller bandwidth.

The CGTPIF digital controller design software has

options intended for time domain analysis and is adapted for

LQ-PI controller feasibility. No frequency domain analysis

with a Bode plot or PSD options is available. To evaluate

the LQ-PI feasibility, passive isolation time responses

are made using TOTAL for a unit step input and compared to

CGTPIF time responses with initial conditions appropriate

to the TOTAL analysis. Early efforts on the FJSRL Iso-Pad

controller design (Ref 4) used unit step time responses over

a four second settling time criteria to meet controller

specifications. Approximations are made for the resulting

exponentially damped sinewave unit step response. First,

a unit step can be scaled, as was done in Chapter IV

transmissibilities studies as long as the system operation

remains linear. The unit step could be considered as an

one g input disturbance for translation control and as one

arcsecond tilt disturbance for rotation control analysis.
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These inputs can be scaled appropriately once true

disturbance magnitudes are known without reaccomplishing

the controller simulations. Secondly, the damped frequency

is an approximation of the acceleration output frequency

content for the translation controllers. The tilt specifica-

tions are given in time response constraints and are

evaluated directly from the CGTPIF analysis for the rotation

controllers. The controller design approach using CGTPIF

is now discussed.

Controller Design Approach

The SSP digital controller is approached as six

individual controllers - one for each degree of freedom.

Actually, only four loops are needed because the X and Y,

and 4, and 0 loop pairs are identical.

Within each loop, two system A matrices are possible

by considering the full SSP isolation dynamics or a reduced

order model using only the upper level dynamics. In the

SSP isolation controller structure, three further permutations

are possible using combinations of the upper and lower

level actuators. These permutations result in one multiple-

input multiple-output (MIMO) system or two single-input

single-output (SISO) systems - the upper or lower level

actuators for control inputs. The translation (X, Y, Z)

controller has a direct feedthrough of the actuator (specific

force or acceleration) along with state combinations to the
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output (upper level) acceleration, while the rotation

controller ft, , 0) output tilt is a system state with

no feedthrough contribution.

In summary, four configurations are analyzed for the

two basic controllers in each direction designated as

1. SSP Isolation (MIMO) - Upper and Lower Level

Actuators

2. SSP Isolation (SISO) - Upper Level Actuators

3. SSP Isolation (SISO) - Lower Level Actuators

4. Second Stage Isolation (SISO) - Upper Level
Actuators

Controller costs are specified for Eq 5-5 in each

controller design. The actuator cost weight Uc is derived

using guidelines (Ref 11) for a control weighting equal to

the reciprocal of the maximum actuator force squared. The

maximum SSP force available is ten pounds (Ref 14:24) which

yields a 0.01 weighting for Uc . The control rate Ur is

assumed to be 0.1, as ten times the actuator cost weight.

The output cost Yc is varied from 1 to 100 with the results

noted in each controller design section. The cost weighting

matrices have zeros added for the MIMO and SISO configurations

to account for input control configurations, no cross

cost considerations, and a desired system output penality.

Controllability and observability analysis is theoretically

commented on in each controller section using basic analysis

of the B input matrix and C output matrix for controllability
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and observability measures directly. The results in each

case is verified using a software package "MIMO" (Ref 13)

but is not listed in the study.

All configurations suffer from being weakly controllable

which is a direct function of the coefficient value in the

B input matrices being either scaled by large mass (trans-

lation) or moment of inertia (rotation). For example,

Bx matrix for X controller is scaled by the upper and lower

masses. The factor i/mu scales Eq F-5 by 0.0019 which is

evident in the last row of Ax and BX in the X - Controller

(SSP Isolation). To avoid the controllability problem,

the candidate controller design uses the B input coefficient

resulting from the dynamics equations in Appendix F and G,

but the CGTPIF simulation used values scaled to one.

Physically, any input actuator force is attenuated by such

a mass scaling factor and is describing the reality that a

small force does little to induce an acceleration or tilt

to a large mass.

Observability theoretically is the most serious control

problem for the SSP. Only the second stage isolation

controller types have outputs using upper level states.

The translation controllers do not have their acceleration

outputs as distinct system state while the tilt output of

the rotation controllers is. The SSP isolation type controller

has no outputs for the control law taken from the lower level.
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Unfortunately, the lower level is physically inaccessible

and instrument monitoring is unlikely, so the SSP isolation

MIMO system has observability problems as will be demonstrated.

A controller is now designed for each of the four

basic configurations in each direction (degree of freedom).

A root locus and Nichols plot is included to give insight

into the controller performance based on classical concepts.

The unit step responses from the TOTAL and CGTPIF simulation

programs are included for performance evaluation. Digital

controller designs for successful (with Riccati solutions)

CGTPIF simulations are listed in Appendix K by direction loop

name configuration type.
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X - Controller (SSP Isolation)

The truth model for the X controller is rewritten

from the partitions of Eqs J-8A and J-8F for the X state

variable and cross coupling terms as

[x A A x x Bx ] [ x

X 0 A x A E X 0 0 B 0 U

(5-10)

Y = C X + D U (5-11)

The X state space model using SSP dynamics for X loop,

with no rotational cross coupling (no truth model), reduces

Eq 5-10 to

X = Ax Xx + Bx Ux (5-12)

Using the state notation from Eq J-2 and the A matrix

values from Eq J-10, the X state representation is written

completely as

xl 0.0000 1.0000 0.0000 0.0000 X1

X2 -2740.0000 -6.7424 1140.6054 1.7230 X 2

0
X3  0.0000 0.0000 0.0000 1.0000 X3

0

x, 631.6547 1.5080 -631.6547 -1.5080 X4

(5-13)
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The root locus of the X open loop is obtained by

considering the X transmissibility for the SSP isolation

as a unity feedback continuous time system. The root

locus is shown in Figure 5.3. Four complex poles are

located near the imaginary axis with two poles in the left

half plane (LHP) (Ref 6). The lower frequency complex

poles pair seek out the two system zeros while the higher

frequency poles cross the imaginary axis into the right

half plane (RHP) along a vertical asymptote parallel to the

imaginary axis. The cross effect between the two pair of

complex poles is a stability consideration because of the

SSP isolation minimum phase and gain margins. All root

locus for the SSP isolation (translation and rotation)

dynamics have the same general shape and analysis comments.

The poles and zeros are repeated from Eq 4-35:

Poles: p,, 2  = -0.4079 ± j1823

PS, 4  = -3.717 ± j55.00

Zeros: z. = -397.9

z 2 = -418.9

A Nichols plot for the open loop transfer function is

in Figure 5.4 which shows how the 5.29 dB (6.5 Hz) gain margin

and 5.391 (4.5 Hz) phase margin affect controller stability.

A unit step continuous time response is shown in Figure 5.5

with a ±0.20 damped sine wave at 3.13 Hz (on a bias of one)

approximatedat four seconds for comparison to the CGTPIF

unit step responses. Other characteristics of Figure 5.5
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X -RESPONSE(SSP ISOLATION)

-17.14

-68.57 ~ ~ ~ -34.2-4.99171

F8CFILE- 17.1429 UNITS/INCH

OLTF(S) (S+397.91US+418.91OLTF S) (32*0 8163+332.499)(5Z+7.4343*3038 8163)

Figure 5.3 X - Resoonse (SSP Isolation) - Root Locus
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are summarized in Table 4.4, under the TXu/p(t) response.

Various SISO type controllers are tried using the

following actuator configurations as

Upper Level Actuator:

0.0000 " [F X 1 
. 0 0

B x Fx 0.00DX 0.0019
0.0000

0.0019
(5-14)

Lower Level Actuator:

0.0000 ifx)

0.0034 [0.0034]
Bxf = Dx =LoooJ

0.0000 0.0000

0.0000

(5-15)

The output is the same in both configurations:

Y2= [631.6547 1.5080 -631.6547 -1.50801 Xi

X2

x 3

X4

(5-16)
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Fx and fx are the U terms in Eq 5-12 which represent

the X upper and lower level actuator resultant forces. The

lower actuators are indicated by f in Figure 3.4. Resultant

forces from these actuators use a subscript for the summation

orientation on the SSP. No solutions are possible from

CGTPIF for these SISO configurations, even with Bx scaled

to one to account for the weak controllability. These

controllers are not fully observable and controllable. More

design analysis is done with SISO configurations for the Z

controller.

A MIMO configuration is tried using the upper and lower

actuators with the only output being the upper level accel-

eration, which is a combination of system states and not

fully observable. The Bx and Cx matrices are listed below:

0.0000 0.0000 fx

0.0034 0.0000 F x
X X 0.0000 0.0000

0.0000 0.0019 (5-17)

Y'1 0.0000 0.0000 0.0000 0.0000 1

Y2 631.6547 1.5080 -631.6547 -1.5080 X2

X3

X400034 00000 fx1
0. 0 0 0 0 0. 0 01 9 F x (5-18)
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CGTPIF provided a solution which is listed as Case 1,

Design A in Appendix L. An approximate estimate of the system

response can be made from Figure 5.6 as a peak-to-peak response (4

seconds) of ±0.02 damped sinewave at 3.12 Hz on a bias of

one. The X acceleration unit step response is simulated

by an initial condition of 0.0016 for state X1. The Yi

output is a zero row because the lower level is not readily

accessible. The Bx input matrix is scaled to one to compensate

for weak controllability. No increase is possible in the

output cost Yc without destabilizing the system output.

X - Controller (Second Stage Isolation) - SISO

The upper level and the second stage isolation dynamics

partitioned from Eq 5-18 yield the reduced order model as

X 0.0000 1.0000 X3 0.0000 Fx[o: = [ ]
X4 -631.6547 -1.5080 X4 0.0019

(5-19)

Y2 [-631.6547 -1.5080] X3 + [0.0019] FxX4 1
(5-20)

The reduced order system root locus is shown in Figure

5.7. Two complex poles have their root locus rcturn to

LHP an implied zero in the far LHP, not shown due to plot
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scale. This root locus plot is typical for the second

stage reduced order models for all directions. Essentially,

this reduced order controller does not go unstable due to

higher gains, because the system eigenvalues are moved

further into LHP. The second stage isolation poles and

zeros for the open loop transfer function are:

Poles: P1,2 = -0.7540 ± j25.12

Zeros: z1  = -418.9

A 10 degree phase margin can be approximated from the

Nichols plot in Figure 5.8. Gain margin is not a constraint

either in the Nichols plot or the root locus plot.

A unit step time plot for the open loop continuous

time response is shown in Figure 5.9 which shows ±0.075

damped sine wave at 4.17 Hz on a bias of one. A summary of

Figure 5.9 is listed in Table 4.6 for TX u/L(t) response.

Case 2, Design A is the CGTPIF digital controller for

the X second stage dynamics reduced order controller. The

CGTPIF unit step response shows in Figure 5.10 (at 4 seconds)

a ±0.08 damped sine wave at 4.17 Hz for an initial condition of

X3 equal to -0.0016. The LQ-PI controller removed the bias

present before in Figure 5.9 produced by TOTAL. For CGTPIF,

B is scaled to one as weak controllability compensation

and the output cost is kept to one to prevent instability.
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Z - Controller (SSP Isolation)

The truth model for the Z controller is rewritten from

the partitions of Eqs J-8c, J-8d and J-8e for the Z state

variables and cross coupling terms as

0
z Az A z Az z B z ]

X = Az A 0 X +0 B U

X A z 0 A X 0 B U

(5-21)

= C X + D U (5-22)

The Z state space model using SSP dynamics for Z loop

reduces Eq 5-21 to

X = A X + B U (5-23)

Using the state notation from Eq J-4 and A matrix

values from Eq J-18, Eq 5-23 is written as

0
Xg 0.0000 1.0000 0.0000 0.0000 X9
0

X -5898553 -3.1292 230.9726 1.2254 X10
0

Xl1 0.0000 0.0000 0.0000 1.0000 X1,0
L2 127.9101 0.6786 -127.9101 -0.6786 X 12

(5-24)
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The Z root locus plotted in Figure 5.11 is analyzed

and commented on similarly to the X - SSP Isolation open

loop root locus.

Poles and zeros are repeated from Eq 4-33:

Poles: P1,2 = -0.1883 ± j8.422

P3,4 = -1.716 ± j25.37

Zeros: z3, 2 = -188.5

A Nichols plot drawn in Figure 5.12 depicts the 5.25 dB

(3.0 Hz) gain margin and 5.710 (2.0 Hz). A unit step contin-

uous time response is shown in Figure 5.13 with a ±0.60

damped sine wave at 1.32 Hz (on a bias of one) approximated

at the four second time criteria for comparison to CGTPIF.

A further summary of Figure 5.13 is made in Table 4.4 under

the TZ u/p(t) response.

I' Several SISO controllers are proposed using the following

actuator -onfigurations as.

Upper Level Actuators:

0.0000

BzFz 0.0000 D Z [0.00001
0.0000L 0.0019

0.0019

(5-25)
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Lower Level Actuators:

0.0000

Bf 0.0034 fD 0.0034

0.00001 0 0000

0.0000

(5-26)

The output expression is the same in both designs:

[Y61 = [127.9101 0.6786 -127.9101 -0.67861 X 9

X10

X11

X 12

(5-27)

Only the upper actuator configuration (SISO) provided

a digital controller design from CGTPIF. The output cost

Yc is varied from 1000 to 10,000 with the following performance

results:

Y Z - AccelerationC

1000(Design A) ±0.6 damped sine wave (1.35 Hz, bias -0.5)

10,000(Design B) ±0.6 damped sine wave (1.35 Hz)

100,000 no solution from CGTPIF
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The input matrix B is not scaled and the designs are

listed in Case 3, Appendix L. Of all the SISO controllers

for any SSP isolation, CGTPIF gave a solution for the Z

direction. No step responses are available but their form

is similar to Figure 5.14. The only explanation is the

double zero in the root locus at -188.5 and is probably a

theoretical dynamic structure not necessarily possible in

the actual SSP dynamics.

A MIMO design is built using the following BZ, Yc

expressions:

0.0000 0.0000 [fz

0.0034 0.0000 Fz
0.0000 0.0000

0.0000 0.0019 (5-28)

Y [ 0.0000 0.0000 0.0000 0.0000 X9

Y 127.9101 0.6786 -127.9101 -0.6786 X10

X11

X 12

0.0000 0.0000 fz

0.0000 0.0019J FZ

(5-29)
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CGTPIF obtained a digital design listed in Appendix L,

Case 3, Design C. The unit step acceleration for an initial

condition on X9 of 0.0078 is shown in Figure 5.14. The

performance approximated at 4 seconds in Figure 5.14 is

±0.0729 damped sine wave at 1.32 Hz. The input matrix BZ

is scaled to one and Y c could not be increased past one.

The discrete BD input matrix is listed in Case C.

Z - Controller (Second Stage Isolation) - SISO

The upper level and the second stage isolation dynamics

partitioned from Eq 5-24 yield the reduced order model as

r = 0.0000 0 X11 + [0.0019] FZ

LX121 -127.9101 -0.6786 X j

(5-30)

Y6= [-127.9101 -0.6786] Xn3 + [0.0019] FZ

(5-31)

A root locus for the upper level dynamics is shown in

Figure 5.15 and is typical of the second stage root locus

as discussed for the X controller. The second stage isolation

poles and zeros for the open loop transfer function from

Eq 4-50 are:

Poles: P1,2 -0.3393 ± jll.30

Zeros: z, = -188.5
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A 10 degree phase margin can be interpreted from

Figure 5.16. Gain margin is not a constraint either in

the Nichols plot or root locus.

A unit step time response for the open loop continuous

time system is shown in Figure 5.17 which shows at four

seconds a ±0.3 damped sine wave at 1.79 Hz on a bias of one.

A summary of Figure 5.17 is listed in Table 4.6 for TZ u/L(t)

response.

Case 4, Design A is the CGTPIF digital controller designed

for the Z second stage isolation. The CGTPIF unit step

response shows at four seconds in Figure 5.18 a ±0.5021

damped sine wave at 1.92 Hz for an initial condition of X11

equal to -0.0078. The designed controller removed the

bias present in the open loop response. The digital controller

required B scaled to one and Y c equal to one for a solution.

PSI - Controller (SSP Isolation)

The truth model for the t controller is rewritten from

the partitions of Eq J-Bc and J-8d for the p state variables

and cross coupling terms as

(5-32)
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Y CX + D U (5-33)

The state space model using the SSP dynamics for

loop reduces Eq 5-32 to

X A X + B U (5-34)

Using the state notation from Eq J-5 and the A matrix

values from Eq J-26, Eq 5-34 is written as

X13 0.0000 1.0000 0.0000 0.0000 X 13

0

X 1 -1425.4116 -7.5620 563.1032 2.9870 X14
0

X15 0.0000 0.0000 0.0000 1.0000 X15
0

X 281.5035 1.4934 -284.0217 -1.5068 X 16

(5-35)

The root locus of the 4 open loop is derived from

transmissibility for the SSP isolation with a unit feedback

continuous time system. The root locus is drawn in Figure

5.19 and is analyzed for the same general form for the X

SSP isolation controller.

The poles and zeros are repeated from Eq 4-42:

Poles: P1,2 = -0.4201 ± j12.58

P3,4 = -4.160 ± j39.38

Zeros: z1 ,2 = -188.5
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-51.43

\ 34.29

17.14

-fl8.57 -51.43 -34.29 -17.14
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(S2+O.840S+158. 433)(S 2+8.323+1SS8.09)

Figure 5.19 PSI - Response (SSP Isolation) - Root Locus

173



A Nichols plot is drawn in Figure 5.20 which shows

the 6.33 dB (4.7 Hz) gain margin and 8.30 (3.1 Hz) phase

margin for this controller design. The continuous time

unit step response is plotted in Figure 5.21 which at four

seconds is a ±0.3 damped sine wave at 2.08 Hz (on a bias of

one) to be compared later to the CGTPIF discrete time

response. A summary of Figure 5.21 is listed in Table 4.4

under T/u/p(t) response.

Two SISO controllers are planned using the following

actuator configurations as

Upper Level Actuator:

0.0000 [T
0.0000
0.0000

'p ~p 0.0000

0.0004 (5-36)

Lower Level Actuator:

0.0000 [t ]

0.0009

0.0000

0.0000 (5-37)
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The output is the same in both configurations:

YB = (0.0000 0.0000 10.0000] X13

X15

Xi6

(5-38)

Notice the Y8 output is simply the i tilt and also

D = 0. The B terms in Eq 5-36 and Eq 5-37 are scaled by

the X moments of inertia for the upper and lower levels.

Based on past experience, B will be scaled to one as was

done for translational controllers due to CGTPIF not being

able to reach a solution. The translation analogy to the large

mass and small force or torque in this case parallels

rotational dynamics from the translational physical realities.

The U vector has upper level ip torques (T ) and lower level

ip torques (t ). Appendix F, Eq F-14 and F-15 relate the

actuators and torques.

CGTPIF gives no SISO solution for the ' controller.

Again, observability and controllability deficiencies plaqued

the controller design process.

A MIMO controller is proposed using the following input

matrix and output equation:
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0.0000 0.0000 t1~

0.0009 0.0000T

IP 0.0000 0.0000

0.0000 0.0004 (5-39)

Y7  0.0000 0.0000 0.0000 0.0000 X131

Y8 0.0000 0.0000 1.0000 0.0000 X14

X's I

X 161

(5-40)

CGTPIF obtained the digital controller listed in Case

5, Design A in Appendix K. The unit tilt discrete response

is plotted in Figure 5.22. An approximation is made of

Figure 5.22 at 4 seconds estimating a ±0.1760 damped sine

wave at 2.0 Hz response. This response resulted from an

initial condition for X13equal to one. The Y7 output is a

zero row assuming the lower level is not accessible. The

B matrix is scaled to one for weak controllability compen-

sation and Yc is not set above one, since the tilt output

is unstable for high costs.

PSI - Controller (Second Stage Isolation)

The upper level and the second stage isolation dynamics

partitioned from Eq 5-40 yield the reduced order model as
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15 0.0000 1.0000 Xls]
= + (0.0004) T

X16 -284.0217 -1.5080 X16 j

(5-41)

Y = [1.0000 0.0000] [X15

X16 j
(5-42)

The PSI second stage isolation open loop root locus is

shown in Figure 5.23. This is a typical second stage root

locus as described for the X direction. The open loop

poles and zeros from Eq 4-56 are repeated as:

Poles: P1,2 = -0.7499 ± j16.80

Zeros: z] = -188.5

The typical second stage 10 degree phase margin is read

from Figure 5.24, PSI - Response (Second Stage Isolation) -

Nichols Plot. Neither the root locus or Nichols plot indicate

a gain margin problem.

An open loop unit step continuous time response is

plotted in Figure 5.25 which shows at four seconds a ±0.075

damped sine wave at 2.5 Hz on a bias of one. A summary of

Figure 5.25 is available in Table 4.6 for the T4)U/L(t)

response.
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Case 6, Design A is the resulting digital controller

from CGTPIF. The input matrix B is scaled to one for weak

controllability and the output cost Yc is kept at one because

increased costs destabilize the output tilt. The unit tilt

response is shown in Figure 5.26 which at four seconds is

a ±0.0108 damped sine wave at 2.78 Hz for an X15 initial

condition equal to one.

Theta - Controller (SSP Isolation)

The truth model for the S controller is rewritten from

the partitions of Eqs J-8a, J-8b and J-8f for the 0 state

variables and cross coupling terms as

0
Xx  Ax  0 A x x 0 0 U

y 0 A y AyO  y+ 0 By Uy

A - 0 0 Bx0 A Ox AGy A X 0 B0 U0

(5-43)

Y0  C E0 + D0 U0  (5-44)

The state space model using SSP dynamics for the

loop reduces Eq 5-43 to

X0  A 00 + B U (5-45)
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Using the state notation from Eq J-7 and the A matrix

values from Eq J-36, Eq 5-45 is written as

0

X 21  0.0000 1.0000 0.0000 0.0000 X 21

X22 -6104.7858 -15.0218 2560.1284 6.1119 X 22
0

X23 0.0000 0.0000 0.0000 1.0000 X 23

0

X24 1279.9637 3.0557 -1289.5446 -3.0786 X 24

(5-46)

The root locus is drawn in Figure 5.27 with the usual

SSP isolation form and general comments made for the X SSP

isolation root locus. The poles and zeros are repeated

from Eq 4-39:

Poles: PI,2 = -0.8363 ± j26.10

P3,4 = -8.273 ± j81.81

Zeros: z = -397.9

Z2 = -418.9

A Nichols plot is drawn in Figure 5.28 showing the

6.22 dB (9.8 Hz) gain margin and 7.10 (7.0 Hz) phase

margin. A continuous time unit step response is shown in

Figure 5.29 with a ±0.05 damped sine wave at 4.17 Hz (on a

bias of one) approximated at the 4 second comparison time.

More information on the time response is listed in Table

4.4 under the function TO U/p(t).
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Figure 5.27 Theta - Response (SSP Isolation) - Root Locus
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Several SISO controllers are attempted using the following

actuator configurations:

Upper Level Actuator:

0.0000 [T ]

0.0000
B 0 0.0000

0.0001 (5-47)

Lower Level Actuator:

0.0000 [t ]

0.0004
Bt =
0 0 0.0000

0.0000 (5-48)

The output is the same in both configurations:

[Y12] [0.0000 0.0000 1.0000 0.0000] X 21

X 2 2

X 2 3

X 2 4

(5-49)

The Y12 output is the 0 tilt. No SISO solutions are
possible from CGTPIF. The input matrix B is scaled to one,

but observability and controllability problems prevented an

optimum controller solution.
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A MIMO controller is specified using the upper and lower

actuators with the output as the 9 tilt for the following

system expressions:

0.0000 0.0000 0
0.00004 0.0000 Tj

0.0000 0.0000

0.0000 0.0001

(5-50)

Y 0.0000 0.0000 0.0000 0.0000 X

[Y1J 0.0000 0.0000 1.0000 o.ooooj x2

X23

X24

(5-51)

The Y11 output is a zero row because the lower level is

physically inaccessible.

CGTPIF provided the solution listed in Case 7, Design A,

Appendix K. An estimate is made from the 0 unit tilt discrete

time response in Figure 5.30 for the tilt at 4 seconds to be

±0.019 damped sine wave at 4.17 Hz for an initial condition

for state X21 equal to one. The B0 input matrix is scaled

to one for controllability compensation and Yc the output

cost remained at one for tilt output stability.
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Theta - Controller (Second Stage Isolation)

The upper level and the second stage isolation dynamics

partitioned from Eq 5-46

= + [.00021 TO
[X2 -1289.5446 -3.0786 X2 00

j5-52)

Y12 = (I.0000 0.0000] X23

I jX24 (5-53)

The reduced order system open loop root locus is shown

in Figure 5.31 and is typical of the second stage isolation

dynamics. Poles and zeros are repeated from Eq 4-59 as:

Poles: P1,2 -1.530 ± j35.77

Zeros: z = -418.9

About a 120 phase margin is indicated in the Nichols

plot drawn in Figure 5.32. Gain margin is not a constraint

in either the Nichols plot or root locus.

A continuous time response is plotted in Figure 5.33 with

a flat step response at the four second criteria point. A

summary of Figure 5.33 is given in Table 4.6 under the TOU/L(t)

response.
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THETA - RESPONSE(SECOND STAGE ISOLATION)

51.43

34.20

17.14

-68.57 -51.43 -34.29 -17.14

-- 17.14

4-34.29

/-51.43

FOCALE- 17.1429 UNITO/[NCH4

OU S K(5+418. 9)
OLTF() 2+3. 06S+281.834)

Figure 5.31 Theta - Response (Second Stage Isolation) - Root Locus
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CGTPIF provided a digital controller design in Case 8,

Appendix K. Design A is plotted for comparison in Figure

5.34 at four seconds is a ± 0.0011 damped sine wave operating

at 6.25 Hz. B0 is scaled to one and Yc is limited to one

for output stability. Design B, with B0 unscaled gives a

±0.01 damped sine wave at 6.25 Hz on a -0.01 bias, with no

plot available - the form would be similar to Figure 5.34.

Design B offered no improvement with increasing Y c

Summary

Four control issues result from the controller design

effort - observability, controllability and SISO/MIMO

configurations. These areas are discussed by reviewing

the control designs for the translation and rotation controller.

The translation controller performance is approximated

by analyzing the continuous open loop unit acceleration

steps from TOTAL and the discrete time step responses from

CGTPIF, a certain point in time - four seconds elapsed response

time. The unit step and output response can give a measure

of transmissibility, namely, if unit input disturbance is

applied to a linear system and the output is 0.01, the system

offered -40 dB attenuation. In frequency domain analysis,

sinusoid inputs would have to be assumed for a rough approx-

imation. Since this is a feasibility study, such a rough

estimate can be made. Also this approximation gives some

idea of the frequency content of the system output - but only

for the damped sine wave frequency. The Z - Controller
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VI. Conclusions and Recommendations

Conclusions

Analytically, the pneumatic isolators in a dual isolator

stage configuration have severe phase and gain margin

limitations which can be seen in any one of the six degrees

of freedom - in either the appropriate Bode plots, root

locus plots or Nichols plots. A single level of pneumatic

isolation avoids the minimum phase and gain margin charac-

teristics but sacrifices the much needed passive transmissi-

bility attenuation to acceleration and tilt disturbances.

The lightly damped response of the pneumatic isolator yields

high resonant magnitude peaks well within the SSP operation

of bandwidth and produces corresponding slow time responses.

The actuator energy requirements are very substantial

because of the large SSP mass and moment of inertia scaling

factors present in all controller designs evidenced by weak

controllability.

Observability is a major control issue. The translation

control loop output is an acceleration which is a combination

of system states making observability difficult. Rotational

controllers have a tilt output that is a distinct system state,

but the rotation and the translation controllers both cannot

observe the lower level states at all. No lower level

outputs are taken for the LQ-PI control law because in the

actual controller implementation no instrumentation is provided

for state estimation.
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The rotational performance could be reviewed, since

the specification is a displacement constraint not a power

spectral density. The SISO controllers did provide design

solutions within the ±0.02 tilt specification, but not

realistic in light of the truth model. Also all the SISO

controller B inputs had to be scaled indicating weak

controllability. The Theta - SSP Isolation Controller - MIMO

met the tilt specification with the B matrix unscaled,

again the truth model simulation deteriorated the performance.

Observability is a problem for the lower level states.

The tilt output is a system state which improved stability

as opposed to the translation acceleration output which

are system state combinations.

One important CGTPIF application note did result. In

cases where B is scaled to one, almost no tolerance is given

to increasing the output cost which causes outputs to go

unstable and grow with time. Since this is a basic feasibility

study, no further efforts are made to delineate the CGTPIF

solution instabilities due to SSP dynamics (observability

and controllability) or CGTPIF numerical difficulties, or

combinations of both. A quick review of Appendix K shows

a wide dynamic numerical range.

As a precaution, the digital controlled sample frequency

is increased to 2 KHz with no performance improvement noted

in the discrete time step responses or controller stabilities.

No tabulation or plots of this simulation are made.
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The SSP theoretical models should be taken seriously

since they accurately predict vertical acceleration resonant

frequencies and account for the observed "second order

responses" resulting from a combination of high resonant

magnitudes and second order attenuations discussed in Chapter

IV.

Recommendations

1. Further SSP active controller efforts should either

verify this study's dynamics or develop new dynamic models

that can be verified by site measurement. Only when such a

dynamics model exists should a careful digital controller be

designed, simulated and verified.

2. Further SSP measurements could verify or disprove

the rotational dynamics. Cross correlation between rotational

and translational measurements would identify the magnitude

of cross coupling modes.

3. More elaborate active controllers could be studied

as discussed in Reference 16, using this study's dynamics

model as a starting point.

4. Engineers could accept the passive response and

estimate and predict axis accelerations and tilts, compensating

the test inertial instrument evaluation profiles based on

proven parameter estimation schemes (Ref 12).

5. CIGTF could reconsider the passive response offered

by the underground test facilities in abandoned mines. Such
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a natural isolation system would not have the lightly

damped, high resonant peaks that pneumatic isolators do

exhibit. Soil dynamics have higher damping ratios and could

be augmented with a second stage fluid isolation system,

similar tn those techniques used in mechanical gyroscopes.

6. Future seismic isolation systems could consider

single level pneumatic and/or fluid isolation. Single level

pneumatic isolation would avoid phase and gain margin constraints

and instabilities of dual pneumatic isolation. Fluid

isolation would exhibit a better time response by avoiding

lightly damped dynamics.
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Appendix A SSP Physical Dimensions
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1-53 inches-I

Section A-A

39.1-
inche s

Drawn to 30th scale.

Figure A.1 Upper Level
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0

53 inches

Section B-B

inch__

132 inches

Drawn to 30th scale.

Figure A.2 Lower Level
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b<N  / 28 inches
40 inches

3 1/2 feet

22 1/2 feet 
f/e

Dimensions as shown.

Figure A.3 Pier and Seismic Block
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Appendix B CSDL Specification Calculations and Conversions

Item 1, CSDL specification, conversion from meru's

to arcseconds/second.

10-5 meru 10-5 meru (0.015 arcsecond/second
meru

- 1.5 X 10 - 7 arcseconds/second

Item 2, an error of one arcsecond on the Earth's

surface is approximately 100 feet. For an hour, the one

arcsecond error corresponds to the following average

velocities and acceleration (expressed in g's).

Vav = 100 feet/hour Vav ' average velocity

A = Vav = 100 feet 1 hour = 3600 secondsav hour (hour)2

_ 00 feet0 fg, gravity units,
(3600 seconds) 2  32.2 feet/second2

100 feet

(3600) 2seconds 2 32.2 feet

second 2

% 10-7g's

The SSP must meet 10-eg's, to be ten times better

than the measurement environment. 7G1 instruments are
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expected to be ten times more accurate than present

instruments, thus 10-g's.

Item 3, measurement bandwidth is derived as follows:

1
f = 1 where T, period (seconds)

f, frequency (Hz)

f 1 10- 2Hz

100 sec

for a one hundred twenty day period:

f = 1
(120 days)(24 hours/day)(60min/day)(60sec/min)

= 9.64 X 10-Hz

, 10- 8H z
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Appendix C. Direction Cosine Matrix Transformation

Angular rotation for the SSP are taken in the order

U I U and EU  for the upper level about the el , e2

and e3 axis respectively. U corresponds to an azimuth

angle and U and U are tilt angles available possibly from

tiltmeters.

a, coso sinO 0 1 1

a2  = -sino coso 0 ;e2  (C-1)a3 0 0 1 e3

a= Cae (0U)e (C-2)

0 0-ae=
w ue= 0 ue3 (C-3)

e3

a 2

uu

aL

0 Rotation about e3
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coscyU 0 -sink

b2 0 1 0 a 2  (C-4)

b3sinvpU 0 cosc U a 3

b-Cba a (C-5)

-baa 1

a,

a 1 i
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ul 1 0 0 1

U2 , 0 COS U  siniU 2 (C-7)

U3 [ 0 -sin o  cos%)U  S3

Ub U bi ui(C-8)

b3

U3

bb2

Rotation about b1

Using the individual direction cosine matrices, a

transformation from e to u is obtained using intintesimal

rotations where

sino % 0

coso % 1

and any angular products (for example (l UOu)) equal to zero.

Since the SSP motion is considered for perturbed small angular
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excursions about a nominal position and first order

approximations; these approximations are justified.

u = cU bO) C C a e (Ou)e (C-9)

1 0 o1
U =0 1 U 0 1 0 - 0 U1 0 e

0 -IPu I o 0 1 00 1

(C-lO)

1 0U U

u= -0 u  1 e (C-11)

u - u 1

Transformation matrices for the lower level (L) and

pier (P) are derived similarly, and are

1 0 L  - L

1 = L 1 'PL e (C-12)

OL -?L 1
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1 0 p - p

[= -p 1 p (C-1 3)

p - p 1

-ue -ub -ba -ae

0b 2  0
= ul + Oub2 + 0Ua3 (C-14)

Using appropriate direction cosine matrix W in the

upper level unit vectors (u) are,

-ue uUl^I + U (cSu0
=+ -U(Cos$U2 sinVuU3)

0

+ su(-Sin1 ul + cosou(sinU 2 + cos Up|)

(C-15)

With small angle approximations and first order terms

retained,

-ue 0 0 0 0
= ul + 0UU2 + OUU3 (C-16)

Physically this means angular accelerations will not couple

into each other under perturbed assumptions about a nominal

position.
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Expressions for the lower level and pier angular

accelerations follow the same derivation and approximations.

-le 0 " 0

W = L 11 + tLl2 + 0L3(C-17)

;pe 0 +~ 0 - +0
p PpP1 + pP2 +opP3 (C-18)
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Appendix D. Perturbation of a Body Center

To understand translational and rotational motions of

the SSP, an upper level corner (or suspension point) in the

ul or easterly (E) orientation is analyzed. A nominal position

is defined as when the u and e unit vectors coincide with

UE and U the nominal corner and center of mass locations

respectively. A translational and rotational perturbation

moves the U frame to the orientation shown below.

e
3

U2

u 3

U 0^ /

,," U2

Nominal Position rUE/UEo
UE el

ul

Figure D.1, Perturbation of a Corner
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The following vectors and points are defined for the

Figure D.I.

Points -

UO  = xuel + yU e2 + Z ue 3 - nominal center of
0 U 0  mass

position for upper
level

U = Xel + yUe2 + ZUe3 - perturbed center
of mass
position for upper
level

UE°  = XUE el + YUE e2 + ZUE e 3  nominal upper level
0 0 0 corner

position (easterly)

UE = XuEel + YUEe2 + ZUEe 3 perturbed upper
level corner
position (easterly)

Vectors -

r U/U - position vector for new position of centerU0  of mass with respect to nominal center of

mass position.

rUE/U - position vector new corner displacement
with respect to nominal center of mass.

rUE/UE - position vector describing new corner
o position with respect to nominal center

position.
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rUE/U ' rUE/IUo  position vector locating
corner from center of mass
in either the perturbed or
nominal orientation, respectively.
Both are equal and constant for
an assumed solid body
structure.

1UE - distance an upper level (U), easterly (E)
corner is from center of mass. Corner
is assumed in same vertical plane as
center of mass. 1UEel , or 1UEul

Since the new corner describes the needed motion

expressions, two vector equivalences of rUE/U are written
0

below.

rUE/U r UE oU + rUE/UE (D-1)
0 o 0 0

uel + XuEe1 + YuEe2 + ZuEe3 (D-2)

rUE/U rU/U + rUE/U (D-3)
0 0

= xu e + yUe2 + ZUe3 + 1 UE u (D-4)

Using Eq (C-I), Appendix C,

1 U  - U

u= -0 1 U e (C-lI)

u - u22
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Eq (D-4) becomes

r XU 1 + YU2 + ZU63 + IUE(61 + C)U&2 - OU63) (D-5)
U E/U

-(xu + lUE)el1+ (Y + k]EOU)e2+ (ZU - 1U EU)63 (D-6)

Eq (D-2) is the measurements an inertial instrument

might make where Eq (D-6) relates the translational and

rotational states. Equating the two equations by component

relates measurements and states.

U E = XU (D-7)

YUE = YU + kE 9  (D-8)

ZUE = 'b 1 UE U (D-9)

For notation reduction UiE replaces rE/UO " The

vector UE is now differentiated with respect to time in

the Earth frame.

(VJ+ 'U)1+ (YU + 'UEOU )12 + (ZU- kUE U )63 (D-6)

0 0 063
TiE 61~e + + ]U%~ U 4 ~~(D-10)
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Defining corner perturbation 
vectors U-N, UW and

US for the north, west 
and south upper level 

corners

respectively, position 
and velocity vectors 

are derived

and differentiated as 
was done for --E and UE.

UN (x U -UNOU)el + + IUN)e2 + (zU + IUNlU)e3 (D-11)

UK 0 e y ;2 + U )&3 (D-12)

= (xo _ IUNOU) I + U e zU + 1UN 3

= I(xU - IUW) + (YU - IUW®U)e2 + ( z U + 1UWU (D-13)

UW 
^ I U) e (D-14)__. 0X , lUWOU)e2 +(zU + ej)3

-S = (x u + lusU)e I + (Y - luS)e2 + (zU usIU)e3 (D-15)

US = xU + USOU ) e1 + Yue2 + U IDs16)

These curner vector 
and their derivatives 

are used

in deriving the equations 
of motion for the SSP 

upper level.

The lower level and 
pier subsystems are 

described by similar

equations with the 
U subscript replaced 

by L and P

respectively. The coupling of translation 
and rotation

motions is apparent 
from the --E, UN, U and US expressions.
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Appendix E. SSP Lumped Spring and Dampe Constants

The second order approximations developed in Eqs 3-7

and 3-10 are used to derive the spring and damper coefficients

for the Z and X (also Y) directions. References are cited

indicating information source in MAC SSP report (Ref 14).

Second Stage Isolation

fVN = 1.8 H z, vertical natural frequency (Ref 14:C-53)

mo  = 530.22 lb-sec 2-Ft, upper mass (Ref 14E-33)

ksz = 16955.12 lb/ft

cSZ = 89.95 lb-sec/ft

fHN = 4.0 Hz, horizontal natural frequency (Ref 14:C-53)

kSX = k = 83728.99 lb/ft

C SX= cSY = 199.89 lb-sec/ft

Load for each isolator is considered as one-fourth

the upper level. Damping coefficient was 0.03 for vertical

and horizontal directions (Refl4:C-10).
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First Stage Isolation

fVN = 1.8 Hz, vertical natural frequency (Ref 14:C-53)

Load = 1b + m L = 823.85 lb-sec 2-ft (Ref 14:E-106)

kFZ 26344.68 lb/ft

which exceeds vertical stiffness specification of 16920 lb/ft

(1410 lb/in)

cFZ = 139.76 lb-sec/ft

fN = 3.8 Hz, horizontal natural frequency

k = k = 117,412.70 lb/ft

which exceeds horizontal specification of 75,360 lb/ft

(6280 lb/in) (Ref 14:K-27)

cFX = cFy = 295.05 lb-sec/ft

oad for each isolator is considered as one-fourth the

combined mass of upper and lower levels. Damping coefficient

was 0.03 for vertical and horizontal directions (Ref 14C-10).
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SSP Moments of Inertia

The moments of inertia are listed below, (Ref 14:D-19)

for qU

IZ= 5095.8 ft-lb-sec
2

' x UY = 2340 ft-lb/sec
2

for mL

ILZ = 2547.7 ft-lb-sec
2

ILX = ILy = 1169.8 ft-lb/sec
2

Pier Lumped Parameters

All parameters are simply taken from MAC study,

(Ref 14:F-26), using damping coefficients resulting from

soil analysis (Reichert Model).

r =1.2 x 108 lb/ft

CGZ 9.34 X 105 lb-sec/ft

k Y = 1.08 X 108 lb/ft

= cGY = 5.41 X 105 lb-sec/ftx 22

225



These parameters represent the combined spring,

damper dynamics in a given direction for the total load

of seismic pier and the SSP. In terms of SSP Lumped

Parameters model the K and C values must be divided by

four or

k = kz/4 = 3.00 X 10' lb/ft

CGZ = cz /4 = 2.34 X 10 5 lb-sec/ft

k = k = kX/4 = 2.70 X 10 7 lb/ft

cGX = cGY = c y/4 = 1.35 X 105 lb/ft

Pier Moments of Inertia

The pier moments of inertia are calculated considering

the seismic mass as a homogeneous rectangular concrete block

of mass 5403.73 lb-sec 2-ft (Ref 14:F-26), standard moment

of inertia formulas (Ref 10:525). Dimensions of seismic

block are taken from Appendix B.

I py = 107,925.50 lb-ft-sec
2

Ip P = 234,575.42 lb-ft-sec
2

I = 329,289.80 lb-ft-sec
2
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Ip Pis used in all transmissibility calculations

since a higher value of moment of inertia represents a

lower natural frequency and greater concern to controller

development. Ipy would concern frequencies outside the

active controller bandwidth, approximately a horizontal

natural frequency of 30 Hz.
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Appendix F. SSP Three Degree of Freedom - Translation

Eqs 3-21, 3-22, and 3-23 result from Newton's

Second Law, F = ma. This appendix reduces their vector

differential equations using Eqs D-6, D-10, D-11 thru

D-16 for the upper level, lower level and pier displace-

ments and velocities in the force equations for the

e frame.

First, the vector terms and common coefficients are

made in Eqs 3-9, 3-10, and 3-11.

00

m U -IC S ]  UE -[K S I
0
UN UN

0

0

us

+Ics ]  LE + [Ks1 LE

0

LN LN

LW LW
0

LS '

+ FUE + U N + F W+ FLS(F-i)
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0-0 0

mLL -[Cp + Cs] - - [K p + KS] 1-
0LN

0

0

L-S LS

+ [C] PE + [KF] E

PN
0

PW PW
0

PS P S

+ [CS] UE + [Ks] UE

UN -UN

Uw

us us

(F-2)

mpP -[C G + CF] PE - [K G + KF]

PN PN

PW PW

PS

+ [CG +m [KG] GE

GN GN

GW GW

GS GS
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+ [CF] LE [KF ] LE

LN ER

0

LW LW

0

LS LS

F PE pN - FS FPS (F-3)

Eq F-1 expanded using transformation from Appendix E.

00 0 0 0 0 0

mu xo x U (Y + 1UE®U) (zu - UEU) CSX

00 0 0 0 0

YU (xu - IUN0 U) YU (Zu + IUNU) csy

00 0 0 0 0 0

z UX u (Y u - lOW 0 ) (zu + UOU CSZ
0 0 0 0 0

(xu + 1 US 0 U) YU (zu - IUSPU)

(Xu + 1 UE) (YU + IUEOu) (zu - IUEU ksx

(xu - 1 UN 0 U) (YU + 1 UN) (zu + IUNIU) kSY

(x -l IUW) (y - Iuwu) (zu + 1 UWU) kSz

(xu + US U Y - 1 US) (zu -US U
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0 0 0 0
+XL (YL + IUEL) (ZL UEOL C Sx

0 0 0 0 0

XL LN L YL (zL + UN L CSY
0 0 0 0

XL (YL- ILW L) (ZL + ILWOL cSZ

0 0 0 0 0

(xL + ILS L )  YL (zL- LSL

+ (XL -1 LE) (YL + 1LE L) (zL - 1LEAL) kSx

(XL - ILN0 L (Y L + ILN) (zL + 1LN'L) kSY

(x - LW) (YL - LW0 L) (zL + ILWL) kSz

(xL - ILS0 L) (YL- 1LS) (zL- ILSL

+ 0 + -FHN + 0 + -FHS

-FHE 0 -FHW 0

FVE FVN FVW F VS

(F-4)

Similar expansions for the lower level and pier can be made

using transforms from Appendix D. These expansions are

included in the following expressions for all three bodies

in the ej , e2 , and e 3 degrees of translational freedom.

For the j direction the pure translation components

and rotation cross coupling terms have also been segregated,
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00 0

mX u - 4c s xu- 4k s xu- k sx(r UE-r

0

+ 4c sX L + 4k s 1.- k sx(1 -1 W

0

- csx (lus 1 UN~~ - k sx Rus 1 UtN o

0

+ c sxlLS -1 N 1)L k sx(1 -S 1 LN)o

- F -N F l (F- 5)

00 0

m LxL 4( FX + c x) x L- 4(k FX+ k sx)x L- (k FX+ k SXM(LE 1 W
0

+ cFX xP +4 FX xP+k FX ('PE - 1 PW)
0

+ 4c s +4kx x u+ksx 1UE -1 UW)

0

-(C FX + c SX)( LS 1LN)L -(k FX + kSX)(lLS - I LN )(DL

+ C FX ( Ps- I PN~lp + k FX (' PS - 1 PN )op

0

+C) c x 1us UN )3U + k sx i us 1 UN )ou

(F-6)

00 0

mX = -4(c GX+ c ) x p- 4(k GX+ k )x p- (k GX+ k X P -IPW

0

+ cGX xG + kGX x GC X (i GE - 1 GO
a

4c FX L+4 FX xL +kFX (i LE - LW)

-(C GX+ cFXM(PS 1 PN~llP - (k GX + k FX)(lPS - 1 PN )oP

+ CGX (i GS 1 CN)G + k GX (IGS - 1 GN )oG

C FX (i LS -
1LN, L + k FX (iLS I 1LN )oL

(F-7)
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Similarly for the e2 direction, the complete translation

equations are as follows,

muYU =- 4csyyu  _ 4ksyYu -k Y( 1UN - 1US)

0
-Cy + 4ksyYL +ksy(ILN - ILS)

0

-CSY(lUE - IUW 0U - kSy(lUE - 1 UW) 0 U

0

+CSY(lLE - ILW) 0 L + kSY(lLE - ILW )0L

-FHw- FHE (F-8)

00 0

mLYL = 4(cFY + cSY)YL - 4 (kFY + ksy)YL - (kFy + kSy)(lLN - ILS)

0

+4cFY Yp +4kFY Yp + kFY (1pN - 1PS)

0

4cSY YU 4kSY YU kSy (1UN - 1US)

-(cFY + csy) (LE - ILW)0 L - (kFY + ksy)( LE - ILW) 0 L

0

+ cFY (IpE - IPW) 0 P + kFY (IPE - )0p

CSY (IuE -IUW 8U + k USY (uE - IUW ) 0 U

(F-9)
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mpp =Y -4 (cGy +cP - (kGy + kFy)(ipN - PS)

0
+4cGy YG +4kGYYG + kGY (IGN - 1 GS)

0

+4cFY YL +4kFYYL + kFY (ILN - 1LS)

0

-(CGy + c FY)MIPE I pw 0 - (kGY + kFy) HIPE - PW )0 p

0

C Gy GE GW)GG + kGy (1GE I GW)eG

0
+ CFy ( - UW )OL + kFY (1LE -

1 LW) 0 L

(F-b0)

Equations for the e3 direction follow the same scheme

used in the e, and e2 directions. The complete translation

equations are listed below.

00 0

mZ U  = -4 cszZ U - 4k zzU

+4c SZZL + 4k SzZL

ScSZ(UN - 1us )U - kSz(IUN - Ius)IU

0

-csz luw - 1 UE)U - kSz(IUW - I UEU

0

+cSZ(lLN - 1LS ) L + kSZ(lLN - LLS)L

0

+CSZ(ILW - ILE )L + kSz(ILw - 1 LE" L

+ FVE + PVN + FVW + FVS (F-11)
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00 4 cF c )z L -
4 (k FZ + k sz)zL

+4c ZZ 0 S 4Z L
0

+4c sz zu+4k sz u

00

(c (FZ + c SZ) (LN - lLS)IPL - (k FZ + k SZ) ('LN - 1LS)' L

-(c FZ + c SZ)(lLW - 1L - (k FZ + k sz)( LW - L

0

+ C FZ (i PN - PS t p + kFZ (i PN PS-

0

+cF PW PE 4'P+k FZ (i PW 1PE ~p

+ c sz( 1UN - us IPU + k sz (i UN - u

+ c s (1 u ~ 1UE ou + k sz (iuw - 1UE ~u

(F-12)
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00m mpZp -4 (cGZ + cFZ)zp - 4(kGz + kFz)z p

0
+4cGZ zG  +4kGz zG

00

+4cF zL  +4kz zL

0

- (cGZ + cFZ)(IPN - 1ps ) p - (kGz + k FZ)(iPN - Ips)E p

0(cGZ + cFZ)(lpw - IpE) p - kGz F+ kz(pw - pE)'p

0

+ cGZ (IGN - IGS )G + kGZ (IGN - 1GS)IPG

0

+ cGZ (IGW - IGE G + kGZ (IGW - 1 GE) G

0

+ cFZ (1LN - 1LS 4L  + kFZ (ILN - ILS )L

+ cFZ (ILW - ILE);L + kFZ ( LW - ILE)-L

F VE F VN - VW F VS (F-13)

NOTE: Equations for e3 direction do not have (1us - iUN)ksy

and similar terms because the isolator suspension points,

the corners of each level, are in the horizontal plane

containing body center of mass. The SSP was designed so

weight could be added or subtracted to adjusted center of

mass for various gyro test tables and test items.
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The following matrices could be used to relate upper

level actuators (or lower) shown in Figure 3.4 to resultant

forces for six degrees of freedom. An assumption is made

that one half the actuator force is available for trans-

lation or rotation controller command.

The vertical actuators are utilized as:

1 1 0 T
VN L 4 X

F 1 1 0 FVS L 4 Z
1 1 T

FVW L Y

F10 1 (F-14)EVE L

Similarly the horizontal actuators are controlled as:

F1 1 Fx
FHN 0 1

FHS 0 _ 1 TZ

FHW 1 0 Fy

F HE 1 _ 0FE (F-15)

where, F, indicates upper actuators (f could easily be
substituted for lower level)

L, actuator corner location from center of mass.
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p!

Appendix G SSP Three Degees of Freedom - Rotation

The mechanics of the rotation equation derivation are

shown for the upper level isolator moments in vector

notation. Essentially the method is

00 00 00
IUXU1 + IUY Ue2 + I UZU 3

us
F. (G-1)

i=UE

where

Ux , I I IUZ are moments of
inertia about e1 , e2 and e3 axes

ri  isolator moment arms (UE, UN,

UW, US)

F. isolator forces for each corner

sum all force moment arms from

i=UE UE, UW, UN to US

The process proceeds using linear approximations for

moment arms, namely

UE = UE i
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UN = lUNe2

UW = uwe i

US = use 2 (G-2)

No e components arise because isolator suspension points

are assumed to be in a horizontal plane containing body

center of gravity. This assumption is reasonable for the

SSP (upper level, lower level) due to construction specifi-

cations and adjustable center of mass capability with lead

shot compensation for gyro table loading. The pier clearly

violates this assumption, but will be dealt with later.

The process continues with basically a cross product

of all force terms (right hand side) of Eq F-i.

00 00 00

(I uxu + Iuy u + I UZ U] =

0

-(lUE61) X (-[CsIUE - [Ks]U-E)

0
+(UNe2) X (-[Cs]UN - [Ks]UN)

+(-uw) X [CSUW - [Ks UW)

+(-iUse2) X (-[Cs]US - [Ks]US)
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+(lLEe1) X ([Cs] + [Ks]L--E)

+(luNe2) X ([C SIL + [Ks]L--N)

+(-luwe,) x ((Cs]Di + (KsIW)

+(-luse2) X ([C5]LS + [KsILS)

+ T (G-3)

The vector T is a torque produced by the active

controller actuators and is soecified

[ IEuEFVE + IUNFVN + IuwFvw + IusFvs)]el

+ (luE)(-FHE) + (-luw)(-F ,)Ie 2

+ [(I UN )(-FUN) + (-Ius)(-Fus)]e3

(G-4)

Minus signs are retained because they emphasize

the actuator orientation. Note also, the sign on the

actuators forces and their parallel to force column vectors

in Eq F-4.

The cross product operation shown in (G-3) is

continued for the lower level.
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LX L  + ILY L + I Lz0Le =

+(lLEe1) X (-[Cp + Cs]LE - [Kp + Ks]LE)

^0

+(ILNe2) X (-1Cp + C$ LN - [Kp + K sL-N)

+(-ILwL) X (-[C p + CS]IL W - [Kp + KS]LW)

+(-ILse2) X (-[Cp + Cs LS - [Kp + Ks]-S)

+(lpE) X ([CF]PE + [KpIP-)

+(ipNe a ) X ([CF]PN + [Kp]PN)

+(X ([C]PW + [KpIP-W)

+(-lpse2) X ([CF] S + LKp]PS)

+(IuEel) X ([Cs]UE + [Ks]UE)

+(IuN&2) X ([C] UN  + [KIU-N)

+(-Iel ) X ([Cs]UI + [KsIUW)

+(-luse2) X ([C ]US + [KsS) (G-5)

The moment arms used for pier forces, namely 1UE1 , etc.,

are certainly bad assumptions since isolator suspension

points do not lie in the center of mass plane. For this study

the approximation is justified in the passive response

considerations.
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Continuing the cross product for the pier, the

equations are

00 00 00

[IPxP + Ipy + IPzop]e

0
+( IPEel) X (-[CG + CF]PE - [KG + KFIP]z)

0
+( ipNe 2 ) X (-[C G + CFIPN - [KG + KF]IP)

+-pw l ) X (-[CG + CF] G I~ Fl)

0

+(-1PSe2) X (-[CG + CF]I- - [KG + KF]I9)

+( XGEe;) x ([CG]GE + [KG]G-E)

+( 1iGN) X ([CG]I + [KG]G-l)

+(-IGwe I ) X ([CG]G + [KG]W)

+(-lGs 2) X ([CGIGS + [KGI)

+( 1LEel) X HC F]L I + [K F]

+( ILNe2 ) X ([CFIL + [KF]L-)

+(-iLwe)) X ([CF]LW + [KF] -)

+(-lLS&2) X ([CF]L + [KF]u-)

(G-6)

Eq G-4 defined T. The operations indicated in Eqs

G-3, G-5 and G-6 are carried out with the components tabulated

into el , e2 and e3 components containing the pure rotation

and translation cross coupling terms.
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The results for the e1 direction are

00 0

IUX U -Csz(IUNlUN + IlUus) U - kSZ(lUNlUN + 'US 1 us) U

0
+CSz( UN 1LN + 1US 1 LS ) L + kSz(lUN1LN + 1us1LS) L

0

-Csz(lUN - Ius)ZU - kSz (IUN - Ius)zU

0

+Csz (1UN - 1 us)zL + kSz (1UN - 1 us)zL

+1 UNF -1 usFvs

ILXL -- -(CFz + CS)(Ll + liL)lpL - Z(k + ksz) (l~lN + lLLS)OL

0

+CFZ(lLNPN + ILS1 PS)p + kFZ(lLN1PN + 1LSIPS 'P

0

+CSz(lLN1UN + 1LS1us) u + kSg(1LN 1UN + 1 LS 1 us 4U

-(cFZ + CSZ)(lLN - ILS)zL - (kFz + kSz)(ILN - ILS)zL

0

+cFZ(lLN - 1LS)Zp + kFZ(1LN - 1LS)zp

+Csz (1LN - 1LS )zU + kSz(lLN - LS)zU
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00 0 0

1Pxp = (CGZ + cFZ) (1PN1PN + lPSlPS )p - (k GZ + k FZ) ('PN1PN + PPSP

0

+cGZ PN 1GN +PS 1GS ~G + k GZ(1 1 GN+ 1 P S)

0

+c FZ lPNl1LN + lPS 1LS I)L + k FZ(lPNlLN + 1PS1 LS) 'L

-(C GZ + c FZ)HlPN - 1lPS) z - (k GZ + k FZ)Hl N lPS)z p

0

+ cGZ (l PN 1 lPS z G + k GZ (l PN 1 lPS)z G

+cFZ (lPN 1PS zL +kFZ (lPN 1PS )zL

- 1 UNF N+1 usF vs(G-7)

The 62 rotation equations are as follows

00 0

1uy U = c Sz (l UEl1UE + 1lU'1 u)PU - k Sz (lUEl1UE + 1 JW 1 UW ~U

0

+c SZ(l UE LE + 1 U LW ) L + k Sz(l UE LE + 1 UW LW L

0

-Csz 1 u ( -W IUE)z U k Sz (lu -W 1UE )z U

0
+a.Sz 1 IUE z L +k Sz(1 - 1 UE)zL

-1 UEF E+ 1 UWF
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1LA = (c FZ + c sz) (ILElLE + 'LWO L - (kF7, + ksz,) (1.1.L + l~ L

+c FZ (I LE IPE + 1 LW 1PW r'p + k FZ ('LE 1PE + 1 LW P )P

0

-(C +C -iL E+1L 1 L LWu+ks (i~ LE1 ) WIP

0
+(C FZ +(cLW l LW LE +kZ LW lL(E) +k zP)IL E)

0

+:cFZ (IlLW - LE zUp + kFZ (l LW 1 lLE )zU

0+csz (LW LGE + PWGWu + k ksz z L 1 E) +

1yo(kG PE GE Z(PW 1GW+ ~lP)G

0
+ c~l + 1P 1  o~~ + k z(l 1 +114FZ PE G WG G GZPE LE 1 PW LW G

GC Z PE LE +PW- 1 LW) -+kF ( E1L 1P WO

-(CGZ cFZ pw PE )zP -( GZ + kFZ)(lPw PE )

0

+ c GZ (lPW 1 lPE)z G + k GZ (lPW 1 PE )zG

+ c FZ (lPW 1 lPE)zL + k FZ (lPW 1 PE )z L

+ 1 UEF -1 uwF (G-8
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Similarly, the e 3 rotation equations are as follows

00

IUZ °U = SX(IUNIUN u US s (SX( UN1UN + IUSIus

+ 0U +

CSY(lUE1UE + IUW1uw) kSy(lUE1UE + 1 u1uwi

CSX(UN1LN + 1us)LS kSX( UN LN + IUS LS )

+ 0L + + 0L

cSy(IUEILE + IUWILW kSY (I UEILE + 1UW1LW

0

CSX(Ius - UN )xU - ksx(lus - lUN)XU

0

+ c S(1us -1 UN)x L + kSX (1 - 1UN)xL

0

CSY(IUE - 1uw)Yu - kSy(lUE -uw)Y U

+ cSy(iUE - 1uw YL + ksy(lUE - )Y L

1 UEFHE + IUNFHN + IuwFHw IusFHS
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~ 00 (C~ + cs)(.1 + ~ILSLS) (kFX k s)( ]lv + 1 L1IL9

0- +L

+ E)L -I

(cY + c S) (IL.9-E + I LJl) (JCFy + ky)( RLl + 1~I)

CF rx(ILN'1PN + 1LS1PS) k Fx (lLNI1PN + iLs 1PS)

0

+ + p + +

c (I I . 1 I ky(1Lip+ LW IPW
FY LE PE +LW PW +1 LE1

c sx ( LN 1 U + 1 LS us) k SX( LN]TUN + iLS Ius)

+ + 0 + + 0

Lc SY( LE IUE + 1 LWIUW) kSY (I.LE IUE + I1LWI UW)

-cF + C sx~ )(ILS - LN )zL - (k FX + k sx) MLS :LN )x L

+ c Fx (lLS - 1 LN )x p + k FX GLS 1 N)p

0

+ c sx (lLS - I LN )x u + k sx (lLS 1 LN)xu

-(cy + Csy) (1  - 1Lw)Y - (ky + key SY LE 1LW)YL

0

"cFY(ILE 1LW)y p+k FY ( LE LW )yp

0

" CSY (ILE - LW )yu + ksy (ILE 1 LW )YU
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00 1 (kGX SI~)~PNP PSl~

IPZ OP (c GZ + CFX) (lM'iN PS IPS)+)()(PlN+I

(cGY + CFY 1PE IPE + IP~~ (k~y + k~y) ( 1pE1 pE + 1 P1I)

c GX (lPNlIGN + 1PS 1GS) k GXI-PN GN + 1 PS1G

0+0

+ + 0 G + G

cGY PElGE +PW GkylPGE+pl)

c FX(IlPNl1LN +1Ps 1LS) k FX(IlPN 1LN +1P 1 L

0 +0

+ + 0 L + 
L

c FY (IPEl1LE + IPW 1LW) k FY (IPE 1LE + 1PW LW)

- (c GX + c FX)Hips - 1 PN)x p - (k GX + k) (X )UP PN )x p

0

+ c GX (lPS PN G +kGX ('PS - PN)x G

" c FX(l PS - lPNXL +'k Fx(l PS -PN )x L

+ c GY FYlPE PW )G +kYlp -(kG+kFYME P P

+ C GY(lPE - PW )yG + kGY (IlPE 1PW)YG

+ -1 FI -1 + F (G-9

+ IUEF HE 1UN F IN -1UWFHWJ + US HS G9
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Appendix H. Simple Three Mass System
Transfer Function Polynomial Coefficients

Z(s) As 3 + Bs 2 + Cs + D

ZG(S) Es 6 + Fs' + Gs 4 + Hs 3 + Is2 + Js + K

where numerator terms are

A = cScFcG

B = cScGkF + cFcGkS + cscF l

C = cF kkS + cGkFkS + cSkFA

D = ksk F

and denominator terms are

E = nbmLmP

F = limp(CF + cS) + m(mL(CF + cG) + mLmPcS

G = mpmo(k S + kF) + mPCSCF + mpmLkS

+nljCL.(cF + c S ) + mLCs(CG + cF)

+IbmL(k + kF)

249



H m m(C kF+ c k) + !m!bcG(kF + kS)

+rq k + k + c Cc + m k(c+c.(F S F S 17F LS + F

+nkCF + cS) + MIcS(kr, +F)

I=mLkS(k F + + M P) k m k F + rqjk F~ + k )

+ cS(CF ,. + + cFcS

J= C

K =D

All terms in the coefficients A thru J are dimensionally

consistant using basic units of L, T, M or length, time

and mass, respectively.
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Appendix I. Transmissibility Polynomial Coefficients

The following coefficients were calculated from

lumped parameter spring and damper values given in

Appendix E using algorithums developed for the full, dual

and single isolation transmissibilities.

Full Isolation

The full isolation transfer function numerator and

denominator polynomial are expressed in the notation of

Appendix H

TZ u/G (j) polynomial coefficients are

A = 223.3061

B = 112,875.4751

C = 18,750,416.3104

D = 1,019,400,524.282

E = 1.0000

F = 176.7548

G = 23,603.6706

H = 209,405.7952

I = 16,105,109.6289

J = C

K = D
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TXu / U/G polynomial coefficients are

A = 606.8114

B = 616,791.8850

C = 200,095,712.8612

D = 20,192,239,747.25

E = 1.0000

F = 108.5847

G = 24,277.2135

H = 508,769.0142

I = 69,169,079.5072

J = C

K D

TOU/G(jw) polynomial coefficients are

A = 886.4462

B = 901.025.9320"

C = 292,305,120.3192

D = 29,497,358,961.09

E =  1.0000

F = 50.3383

G = 14,480.0687

4 H = 379,095.3026
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I 53,235,281.9575

J C

K D

T4U/G(jw) or T U/G(jw) polynomial coefficients are

A = 590.0608

B = 298,260.4301

C = 49,545,813.4351

D = 2,693,648,362.547

E = 1.0000

F = 93.6203

G = 13,351.4852

H= 248,416.7087

I= 19,281,576.4410

J = C

K D

Dual Isolation

The dual isolation transmissibilities polynomial

coefficients are listed using the notation of Eq 4-29.
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TZ UP(jw) polynomial coefficients are

& = 1.2919

b = 487.0599

c = 45,904.7099

d = 1.0000

e = 3.8078

f = 719.0572

g= b

h c

TZ LP(jwL) polynomial coefficients are

a = 117.2864

b = 37,177.3628

c =2,840,484.2000

d = 1.0000

e = 173.6255

f = 22,471.5806

g =b

h c
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TZU,G(iw) polynomial coefficients are

a =111.2444

b = 35,261.6579

C =2,694,091.4752

d = 1.0000

e =164.6773

f = 21,313.4451

g =b

h c

TXUP(w polynomial coefficients are

A = 6.0610

b =4950.7948

c =1,010,309.3674

d =1.0000

e = 8.2503

f = 3377.7858

g =d

h =c
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TX L/P (jw) polynomial coefficients are

a=143.4204

b = 85,704.0493

C = 114,393,496.8012

d. = 1.0000

e =101.7669

f = 20,786.5958

g b

h= c

TX U/G (jw) polynomial coefficients are

a = .143.1919

b = 88,565.0200

t= 11,973,740.2255

'd = 1.0000

'e = 96.6045

f = 19,789.7791
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TO jw) polynomial coefficients are

a = 27.6590

b = 22,592.4016

c = 4,610,434.4703

d = 1.0000

e = 18.2194

f = 7470.1610

hc

TO L/P (jw) polynomial coefficients are

a = 96.5325

b = 57,685.1711

C = 7,668,666.9828

d = 1.0000

e = 35.1309

f = 7720.9232

g b

h =c
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TO UG (w) polynomial coefficients are

a = 97.3424

b = 60,206.8298

6 = 8,139,793.1175

d= 1.0000

e = 34.9107

f = 7,747.9586

g =b

h c

TI U/P (jw) polynomial coefficients are

a. = 6.9904

b = 2635.3787

c = 248,380.7404

d = 1.0000

e =9.1608

f = 1,733.7900

gb

h
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TL/p(j) polynomial coefficients are

a = 131.1338

b = 41,566.6994

c = 3,175,845.3040

d = 1.0000

e = 86.0130

f = 11,278.3372

9 = b

h =

T1U/G(jw) polynomial coefficients are

= 125.2327

b = 39,695.5854

c = 3,032,856.2097

d = 1.0000

e = 85.0357

f = 11,142.5359

g= b

h =c
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Single Isolation

The single isolation transmissibilities are listed in

standard polynomial transfer function form.

TZU/L(jw) = 0.6785jw + 127.9100

(jW)2 + 0.6785(jw) + 127.9100

TZL/P(jw) = 0.6785jw + 127.900

(jW) 2 + 0.6785(jw) + 127.9100

TZp/G(jw) = 14 9 .9 7 80jc + 19,269.1221

(jW) 2 + 149.9780(jw) + 19,269.1221

TXU/L(jw) = 1.5079jw + 631.6547

(jW)2 + 1.5079(jw) + 631.6547

TX L/p(jw) = 1.4325jw + 570.0683

(jW) 2 + 1.4325(jw) + 570.0683

TXP/G(jw ) = 86.8716jw + 17,342.2099

(jW)2 + 86.8716(jw) + 17,342.2099

TOU/L(jw) = 3.0607jw + 1,282.0922
(jW)2 + 3.0607(jw) + 1,282.0922

TO L/p(j) = 3.0120jw + 1,198.6119

(jW) 2 + 3.0120jw + 1,198.6119

TOP/G(jw) = 31.3219jw + 6,252.8156

(jW) 2 + 31.3219(jw) + 6,252.8156
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T U/L (jw) =1.4997jw + 282.6902

(jW) 2 + 1.4997(jw) + 282.6902

TIPLP(iw) = 1.5535jw + 292.8440

jW2+ 1.5535(jw) + 292.8440

T~p /G (iw) =81.7504jw + 10,503.2636

jW2+ 81.7504(jw) + 10,503.2636
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Appendix J. SSP State Representation -

Upper and Lower Level Dynamics

The state vector X is written in terms of SSP variable

and then in true state vector notation.

X
x

x
y

X
z

X 0 (J-1)

where for translation

XL Xi

0

XL X 2

x  x3(J-2)
XU X3

0

XU X4
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y L X5

0

R y yLX 6  (J-3)

y u X7

0

z L x9

0

Rz Z L - X1o (J-4)

z x

0

z uX 12

where for rotations

L X13

- xli (J-5)LX1

IPU uX 15

r
L X1 7

x x 18  (J-6)

u X20
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0 L  X21

0

(30L  X22(J7

0 U X23.

0u  2

The A matrix is written in terms of partition

notation and then in terms of SSP isolator placement lengths

from each body center of mass, spring and damper variable.

Ax A A (J-8a)

A = O (-b

A Az A zip A A2  (J-8c)
A Az A I (J-Sd)

_____A O____ A (J-8e)

A Ox A GY A 0  (J-8f)

Zero matrixes are omitted, but understood from Eq

5-4. Each partition is represented from Appendix F and G

differential equations as shown on the following pages.
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Random Isolator Placement

The preceding A partitions were calculated using random

isolator placement. The isolator misalignments were assumed

to be a uniform distribution having a mean of 53 inches and

over a uniform distribution of plus or minus one-half

inch. Granted, these misalignments do represent a "worse

case" from MAC's specification (Ref 10:15) of plus or minus

a one-quarter inch isolator placement.

The placements were generated by a CDC 6600 FORTRAN

function RANF which returns random numbers between 0 and 1.

The isolator locations were calculated according to the

following equations.

I
1 = RANF + 52.5

Placement values -produced for the SSP isolators are

given as

1UE = 53.0796 1UN = 53.4504

I = 53.2860 1us = 52.7976

1LE - 52.9536 1LN = 52.5060

ILW 152.7748 1LS = 52.8048

iPE = 53.1888 IPN = 52.8816

1 = 52.6320 1 PS = 53.3316
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Appendix K - CGTPIF Digital Controller Designs

Appendix K contains the results of designing possible

digital LQ-PI controllers with CGTPIF. Only controllers

proposed in Chapter V with solutions are listed on the

following pages. Controller variables follow Eqs 5-6 and

5-7 for Figures 5.2A and 5.2B in Chapter V. Each controller

type desiqn is referred to by a case number from discussions

in Chapter V for different actuator configurations and cost

criteria designs indicated by a letter.
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